EiffelVision

Requirements Specification

ISE Technical Document

Modification date: 10/12/98

Copyright ISE, 1998

CONTENTS

Chapter 1: Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations
1.4 References

1.5 Overview

Chapter 2: General Description

2.1 Library Perspective
2.2 Library Functions
2.2.1 Graphical User Interface
2.2.2 Events
2.2.3 Commands
2.2.4 Figures
2.2.5 Drag and Drop
2.2.6 Pick and Drop
2.3 User Characteristics

Chapter 3: Functional Requirements

3.1 Widgets

3.2 Primitives
3.2.1 EV_BUTTON
3.2.2 EV_TOGGLE_BUTTON
3.2.3 EV_CHECK_BUTTON
3.2.4 EV_RADIO BUTTON
3.2.5 EV_LABEL
3.2.6 EV_TEXT_COMPONENT
3.2.7 EV_TEXT_FIELD
3.2.8 EV_PASSWORD FIELD
3.2.9 EV_SPINBUTTON
3.2.10 EV_COMBO_BOX
3.2.11 EV_TEXT_AREA
3.2.12 EV_TEXT_EDITOR
3.2.13 EV_SEPARATOR
3.2.14 EV_RANGE
3.2.15EV_SCROLLBAR
3.2.16 EV_SCALE
3.2.17EV_LIST
3.2.18 EV_MULTI COLUMN_LIST
3.2.19 EV_TREE
3.2.20 EV_MENU
3.2.21 EV_MENU_ITEM
3.2.22 EV_MENU_BAR

CONTENTS

3.2.23 EV_OPTION_MENU
3.2.24 EV_FRAME
3.2.25 EV_PROGRESSBAR

3.3 Drawables
3.3.1 EV_DRAWABLE
3.3.2 EV_SCREEN
3.3.3 EV_DRAWING_AREA
3.3.4 EV_PIXMAP

3.4 Containers
3.4.1 EV_WINDOW
3.4.2 EV_DIALOG
3.4.3 EV_PRINT_DIALOG
3.4.4 EV_COLOR_SELECTION_DIALOG
3.4.5 EV_FONT_SELECTION_DIALOG
3.4.6 EV_FILE_SELECTION_DIALOG
3.4.7 EV_FILE_OPEN_DIALOG
3.4.8 EV_FILE_SAVE_DIALOG
3.4.9 EV_INPUT_DIALOG
3.4.10 EV_MESSAGE_DIALOG
3.4.11 EV_INFORMATION_DIALOG
3.4.12 EV_QUESTION_DIALOG
3.4.13 EV_WARNING DIALOG
3.4.14 EV_ERROR_DIALOG
3.4.15EV_FIXED
3.4.16 EV_BOX
3.4.17 EV_VERTICAL_BOX
3.4.18 EV_HORIZONTAL_BOX
3.4.19 EV_TABLE
3.4.21 EV_SCROLLABLE_AREA
3.4.22 EV_SPLIT_AREA
3.4.23 EV_NOTEBOOK

3.5 Events
3.5.1 General Events
3.5.2 Widget Specific Events

3.6 Commands

3.7 Arguments

3.8 Event Data
3.8.1 EV_BUTTON_EVENT_DATA
3.8.2 EV_MOTION_EVENT DATA
3.8.3 EV_KEY_EVENT _DATA

3.9 Figures

3.10 Timers?

34
34
34
34
34
34
35
35
36
37
41
41
41
41
41
41
41
41
41
41
41
41
41
41
42
43
43
44
45
46
47
48
48
49
49
50
50
51
52
52
53
53

CONTENTS

3.11 Other notes
3.12 Using the Library

53
53

CONTENTS

1

Introduction

1.1 Purpose

This document is the functional specification of EiffelVision GUI and graphics library.
The document describes all the functional requirements for the library and function as
basis and reference when designing and programming the library.

The audience of this document are the developers and maintainers of EiffelVision
The EiffelVision programmer’s manual will be written based on this document.

1.2 Scope

This library is a new version of ISE’s EiffelVision. In this document the terms
‘EiffelVision’ and ‘the library’ refers to the new library and the term ‘old EiffelVision’
refers to the old library. Although EiffelVision is a rewrite of old EiffelVision, parts of
the old EiffelVision are used in the implementation of the library whenever appropriate.

EiffelVision is a software library for application developers using Eiffel language.
EiffelVision offers an object-oriented framework for both graphical user interface and
graphics development.Using the library, developers have an access to all the necess:
GUI components to develop a modern, functional and good-looking application. The
library also offers tools to draw figures, points, lines, arcs, polygons etc., on the screen

1.3 Definitions, Acronyms and Abbreviations

Eiffel [Meyer 1992]

EiffelVision GUI and graphics library for applications development
described in this document.

old EiffelVision Old library for the same purpose than the above.
GUI Graphical User Interface.

7 Introduction 81.4

GTK The GIMP tookit. See section [GTK 1998].

Widget GUI component in EiffelVision.

Developer, Library User The application developer, who is using EiffelVision li-
brary.

User, Application User The user of the application developed using EiffelVi-
sion

1.4 References

[Meyer 1992]

Bertrand MeyerEiffel: The LanguagePrentice Hall Object-Oriented Series, 1991;
second revised printing, 1992.

[GTK 1998]
GTK Web pagehttp://www.gtk.omg/; 1998.

1.5 Overview

Chapter 2 describes the general factors that affect the library and its requirements.
Chapter 3 contains the detailed requirements on the fuctions and the external interfaces
of the library together with design constraints.

2

General Description

2.1 Library Perspective

EiffelVision is an abstract, is multi-platform library. Supported platforms are Microsoft
Windows and Unix/X Window System using GTK toolkit [GTK 1998].

2.2 Library Functions

The main functions of the library are to provide components for building graphical usel
interface for an application and drawing figures onto a screen.

2.2.1 Graphical User Interface
EiffelVision provides a set of GUI components and methods to associate actions to GL

events. GUI components in EiffelVision are called widgets. Widget hierachy is presente
in picture 1.

9 General Description §2.2

Figure 1 Class hierarchy for EiffelVision widgets

Most of the widgets in EiffelVision have events and the user of the library can associate
commands to the events. For example, fBUTZTON widget there is an actiddutton__

press In order to associate an action, for example open a dialog, to this event the user
defines his own command class inheriting from a EiffelVision cda¥dMAND, creates

an object of that type and uses a feaade actionfrom BUTTON.

2.2.2 Events

An event is an external action, usually triggered by the application’s user, which may
affect the execution of the application.

Simple examples of events are mouse button pushes and keystrokes. Others include
timer activation, mouse movement, auto-repeating keyboard, context resize and change
of window resources.

In an application, not all events will be meaningful for each context. For example a
keystroke is typically ignored if it occurs outside of any window. So part of what defines
an application is the two-dimensional grid of what events are meaningful for what
contexts. Such a grid is calledi@te domain Here is a simple example of state domain:

Event Leftclick Rightclick Cursorout Keyboard

Context
Window_1 ° °
Window_2 °

Button_1 ° ° °

82.2 Library Functions 10

The ® mark signal the entries for which the given event is meaningful for the give
context. For example the “Cursor out” event (which occurs if a user moves the cursor
of the current context) is meaningful Mfindow_landButton_1but not forWindow_2

As its execution progresses, the state domain may change. For example a typ
application may give you, most of the time, the choice between several possible eve
(left-clicking, right-clicking, moving the cursor, entering text at the keyboard) in sever:
contexts (the windows, panels and buttons of the application), so the state domain r
be quite large; but a certain operation may trigger a confirmation panel in which tl
application will only recognize two events: left-clicking on the OK button and left-
clicking on the CANCEL button. This means the application has entered a new, smal
state domain.

2.2.3 Commands

When an event occurs in a certain context, and the context-event pair is part of the cur
state domain, the application will execute a certain action. That action is representec
Eiffel by an object — an instance of the EiffelVision cl@&&8MMAND (more precisely,

a direct instance of one of its proper descendants).

In X toolkits such as Xt, OpenLook and Motif the closest notion is that of a callbacl
A callback is a reference to a certain C function; you can plant a callback in the toolkit
specify that the corresponding function must be called when a certain event occurs.

Callbacks also exist under Windows, allowing Windows components to ca
application-specific functions provided by an application’s developers. They make
possible to avoid the massive switch instruction that is traditionally found in Window
applications.

The EiffelVision notion of command is more abstract than the notion of callback.

conforms to the object-oriented model (every command will be an object) and provid
added power: in addition to thexecuteprocedure, which describes the command’s
execution and corresponds to the callback, command objects may have other feature
particular acancel procedure that deletes the effect of the command. This makes
possible to equip an application with an unlimited undo-redo mechanism, as describet
chapter 12 oDbject-Oriented Software Construction

Here is a general model for a class describing undoable commands:

deferred class
UNDOABLE_COMMAND

inherit
COMMAND

feature
undoable: BOOLEANs True;
executas
-- Execute the action of this command
deferred
ensure

11 General Description §2.2

done notundone
end

undois
-- Cancel the action of this command
deferred
ensure
undoing_occuredundone
end

redois
-- Re-execute previously undone command
require
undone undone
deferred
ensure
executednot undone
end

feature {NONE}

undone: BOOLEAN
-- Has the command been undone?

end-- class COMMAND

Theredocommand is often, but not always, identicatxecute

A list of objects of typdJNDOABLE_COMMANDS called aistory list. Keeping
a history list enables an application to support a multiple-level undo-redo mechanism.
When a user requests an “undo”, the application can simply execute

history_list.item.undo;
history _list.back

Dynamic binding ensures that the proper versiamnalois applied to each selected
command lgistory_list.item in the list. A similar scheme is used when the user requests
a “redo”.

2.2.4 Figures

The interface of an EiffelVision application may include not just predefined contexts but
also graphical figures.

The EiffelVision model figures is inspired from a familiar notion: geographical
maps. The design of a map uses several levels of abstraction, illustrated on the Figure 2:

* We may view the reality behind the model (in an already abstracted form) as a set
of geometrical shapes digures. For a map the figures represent rivers, roads,
towns and other geographical objects.

» Then, theworld is a set of such figures.

» Thewindows are rectangular areas of the world.

82.2 Library Functions 12

* The map is a representation of a part of the world which can contain one or mc
windows. For example a map can have one main window devoted to country, a
subsidiary windows devoted to large cities or outlying parts (as with Hawaii in may
of the USA).

* And thedeviceis a physical medium on which the map is displayed. The device i
usually a sheet of paper, but we may also use a computer screen. Various patrt
the device will be devoted to the various windows.

DEVICE
window

window4

window?2 /w .

WINDOW

WORLD

Figure 2 The graphical model

The four basic concepts -world, figure, window device— transpose readily to
general graphical applications, where the world may contain arbitrary figures of intere
to a certain computer application, rather than just representations of geographical obje
Rectangular areas of the world (windows) will be displayed on rectangular areas of
device (the computer screen).

The above figure shows the three planes: world (bottom), window (middle) ar
device (top). The notion of window plays a central role, as each window is associated b
with an area of the world and with an area of the device. Windows also cause the o
significant extension to the basic map concepts: support for hierarchically nest

13 General Description §2.3

windows. Our windows will be permitted to have subwindows, with no limit on the
nesting level, although no nesting appears on the figure.

Note that two transformations are involved, both of which may include a translation
and a scale factor: from world to window, and from window to device. This gives the
necessary flexibility to a model, as you may:

» Move a window with respect to the world (as in when drawing a map of a different
part of a country) or with respect to the device (as when moving a map on your desk).

* Change the scale of the window with respect to the world (as when changing the
scale of a map, the map size remaining constant) or with respect to the device (as
when deciding to use a smaller or bigger map).

2.2.5 Drag and Drop

2.2.6 Pick and Drop

2.3 User Characteristics

Users of EiffelVision are software developers who should have certain knowledge in
order to use the library. The library users should have a reasonably good knowledge of
Eiffel and Object-Oriented software development. They should understand the basic
conceps of Graphical User Interfaces, but a platform specific knowledge of GUI
programming is not necessary. For example, the library user doesn’t have to know MS
Windows programming, because EiffelVision is an abstract library.

3

Functional Requirements

3.1 Widgets

A widget is a basic component when building the user interface. All widgets, except fo
deferred widgets (marked with symbol * in picture 1.) are meant for the library user to
create the corresponding GUI components.

Creating widgets is simple and consistent. All the widgets have a creation procedur
make:

make (par: EV_CONTAINER) is

Procedure ‘make’ has one argument, parent, which is an EiffelVision container (Se
section 3.4). As all the widget need to have a parent, exept the Windows that can be cre:
with the ‘make_top_level’ creation procedure, you need to create the parent before t
create the widget.

Procedure ‘make’ creates the widget using default setting for the specific type o
widget. Some widgets have additional creation routines which can be used, when mol
detailed control over the widgets creation is needed.

indexing
description: "Most general notion of widget (i.e. user interface object)"
status: "See notice at end of class"
names: widget
date: "$Date: 1998/10/02 16:58:46 $"
revision: "$Revision: 1.19 $"

deferred class interface
EV_WIDGET

feature-- Access

15 Functional Requirements §3.1

parent: EV_WIDGET
-- The parent of the Current widget
-- If the widget is an EV_WINDOW without parent,
-- this attribute will beé/oid
require
exists:notdestroyed

feature-- Measurement

-- The coordinates are effective only if widget is inside a
-- fixed container. Otherwise they are calculated

-- automatically by the container widget.

height: INTEGER
-- Height of the widget
require
exists:notdestroyed
ensure
positive_height: Result >=0

minimum_height: INTEGER
-- Minimum height that application wishes widget
-- instance to have
require
exists:notdestroyed
ensure
positive_height: Result >=0

minimum_width: INTEGER
-- Minimum width that application wishes widget
-- instance to have
require
exists:notdestroyed
ensure
positive_height: Result >=0

width: INTEGER
-- Width of the widget
require
exists:notdestroyed
ensure
positive_width: Result >= 0

x: INTEGER
-- Horizontal position relative to parent
require
exists:notdestroyed;
unmanagednotmanaged

y: INTEGER

§3.1

Widgets 16

-- Vertical position relative to parent
require

exists:notdestroyed;

unmanagednotmanaged

feature-- Comparison

same (otherlike Current): BOOLEAN
-- Does Current widget arather correspond
-- to the same screen object?
require
other_exists: other /= void

feature -- Status report

automatic_position: BOOLEAN
-- Does the widget take a new position when
-- the parent resize ?
-- (If it does, its size doesn’t changed).
-- False by default

automatic_resize: BOOLEAN
-- Is the widget resized automatically when
-- the parent resize ? In this case,
-- automatic_position has no effect.
-- True by default

destroyed: BOOLEAN
-- Is Current widget destroyed?
-- (= implementation does not exist)

insensitive: BOOLEAN
-- Is current widget insensitive to
-- user actions?
-- (If it is, events will not be dispatched
-- to Current widget or any of its children)
require
exists:notdestroyed

managed: BOOLEAN
-- Is the geometry of current widget managed by its
-- container? This is the case always unless
-- parent.manager = False (Always true except
-- when the container is EV_FIXED). This is
-- set in the procedure set_default

shown: BOOLEAN
-- Is current widget visible?
require

17

Functional Requirements 83.1

exists:notdestroyed

feature -- Status setting

destroy
-- Destroy actual screen object of Current
-- widget and of all children.
ensure
destroyed: destroyed
hide
-- Make widget invisible on the screen.
require
exists:notdestroyed
ensure

not_shownnotshown

set_automatic_position (state: BOOLEAN)
-- Makestatethe newautomatic_position
require
exists:notdestroyed
ensure
automatic_position_set: automatic_position = state

set_automatic_resize (state: BOOLEAN)
-- Makestatethe newautomatic_resize
require
exists:notdestroyed
ensure
automatic_resize_set: automatic_resize = state

set_insensitive (flag: BOOLEAN)

-- Set current widget in insensitive mode if
-- flag. This means that any events with an
-- event type of KeyPress, KeyRelease,
-- ButtonPress, ButtonRelease, MotionNotify,
-- EnterNotify, LeaveNotify, FocusIn or
-- FocusOut will not be dispatched to current
-- widget and to all its children. Set it to
-- sensitive mode otherwise.

require
exists:notdestroyed

ensure
flag = insensitive

show
-- Make widget visible on the screen. (default)
require
exists:notdestroyed

83.1 Widgets 18

ensure
shown: shown

feature-- Resizing

set_height (new_height: INTEGER)
-- Makenew_heighthe newheight
require
exists:notdestroyed;
positive_height: new_height >= 0
ensure
dimensions_set: implementatidimensions_set (width, new_height)

set_minimum_height (min_height: INTEGER)
-- Makemin_heighthe newminimum__ height
require
exists:notdestroyed;
large_enough: min_height >= 0
ensure
min_height = min_height

set_minimum_size (min_width, min_height: INTEGER)

-- Makemin_widththe newminimum_width
-- andmin_heighthe newminimum_height

require
exists:notdestroyed;
large_enough: min_height >= 0;
large_enough: min_width >=0

ensure
min_width = min_width;
min_height = min_height

set_minimum_width (min_width: INTEGER)
-- Makemin_widththe newminimum_width
require
exists:notdestroyed;
large_enough: min_width >=0
ensure
min_width = min_width

set_size (new_width: INTEGER; new_height: INTEGER)

-- Makenew_widththe newwidth
-- andnew_heighthe newheight

require
exists:notdestroyed;
positive_width: new_width >= 0;
positive_height: new_height >= 0

ensure
dimensions_set: implementatidimensions_set (new_width, new_

19 Functional Requirements §3.1

height)

set_width (new_width: INTEGER)
-- Makenew_widththe newwidth.
require
exists:notdestroyed;
positive_width: new_width >=0
ensure
dimensions_set: implementatidmensions_set (new_width, height)

set_x (new_x: INTEGER)

-- Put at horizontal positionew_xrelative
-- to parent.

require
exists:notdestroyed;
unmanagednotmanaged

ensure
X_set: X = new_X

set_x_y (new_x: INTEGER; new_y: INTEGER)
-- Put at horizontal positionew_xand at
-- vertical positiomew_yrelative to parent.
require
exists:notdestroyed;
unmanagednotmanaged

set_y (new_y: INTEGER)

-- Put at vertical positionew_yrelative
-- to parent.

require
exists:notdestroyed;
unmanagednotmanaged

ensure
y_set:y =new_y

feature -- Event - command association

add_button_press_command (mouse_button: INTEGER; command: EV_COM-
MAND; arguments: EV_ARGUMENTS)
-- Add commando the list of commands to be executed when
-- button no 'mouse_button’ is pressed.
require
exists:notdestroyed

add_button_release_command (mouse_button: INTEGER; command: EV_COM-
MAND; arguments: EV_ARGUMENTS)
-- Add commando the list of commands to be executed when
-- button no 'mouse_button’ is released.
require

83.1 Widgets 20

exists:notdestroyed

add_destroy_command (command: EV_COMMAND; arguments: EV
ARGUMENTS)
-- Add commando the list of commands to be executed when
-- the widget is destroyed.
require
exists:notdestroyed

add_double_click_command (mouse_button: INTEGER; command: EV_COMMANI
arguments: EV_ARGUMENTYS)
-- Add commando the list of commands to be executed when
-- button nomouse_ buttoms double clicked.
require
exists:notdestroyed

add_enter_notify_ command (command: EV_COMMAND; arguments: EV
ARGUMENTS)
-- Add commando the list of commands to be executed when
-- the cursor of the mouse enter the widget.
require
exists:notdestroyed

add_expose_command (command: EV_COMMAND; arguments: EV_ARGUMENT!
-- Add commando the list of commands to be executed when
-- the widget has to be redrawn because it was exposed from
-- behind another widget.
require
exists:notdestroyed

add_key press_ command (command: EV_COMMAND; arguments: EV

ARGUMENTS)
-- Add commando the list of commands to be executed when
-- a key is pressed on the keyboard while the widget has the
-- focus.
require

exists:notdestroyed

add_key release_command (command: EV_COMMAND; arguments: EV

ARGUMENTS)
-- Add commando the list of commands to be executed when
-- a key is released on the keyboard while the widget has the
-- focus.
require

exists:notdestroyed

add_leave notify command (command: EV_COMMAND; arguments: EV
ARGUMENTS)

-- Add commanado the list of commands to be executed when

21 Functional Requirements §3.2

-- the cursor of the mouse leave the widget.
require
exists:notdestroyed

add_motion_notify_ command (command: EV_COMMAND; arguments: EV_
ARGUMENTS)
-- Add commando the list of commands to be executed when
-- mouse move.
require
exists:notdestroyed

last command_id: INTEGER
-- Id of the last command added by featadel command
require
exists:notdestroyed

remove_command (command_id: INTEGER)
-- Remove the command associated witlnmand_idrom the
-- list of actions for this context. If there is no command
-- associated witbtommand_igdnothing happens.
require
exists:notdestroyed

end-- classeV_WIDGET

3.2 Primitives

A primitive is a widget that has no children. It means that other widgets cannot be put inside a
primitive. Some primitives can have components inside, but the type of the components is pre-
defined. For example, a button can contain a pixmap component and a text component, but
nothing else.
deferred class interface

EV_PRIMITIVE

end-- classeV_PRIMITIVE

3.2.1 EV_BUTTON

Button

ClasseV_BUTTON is one of the most useful user interface components. It is also a
common ancestor for different button classes.

A button has a 3D appearance as the underlying toolkit implements it. A button can
contain a text label, a pixmap, or both. When both of them are present, there are two

83.2 Primitives

22

different ways to present them; pixmap on the top and label on the bottom, or pixmap
the left and label on the right.

The reason why a button is not specified as a container is that on Windows it wot
be difficult to implement. It would be conceptually nicer to have button as a container a
then but a label inside it when needed a button with a text and pixmap inside it wh
needed a button with pixmap. More complex situations would also be easy to manage
practice, however, only labels and pixmaps are interesting as components to put insic
button.

indexing

description: "EiffelVision button. Basic GUI push button. This is also abase class fc
other buttons classes"

status: "See notice at end of class"

id: "$Id: ev_button.e,v 1.9 1998/09/22 01:46:45 samik Exp $"

date: "$Date: 1998/09/22 01:46:45 $"

revision: "$Revision: 1.9 $"

class interface
EV_BUTTON

creation

make,
make_with_text

feature -- Access

pixmap_container: EV_PIXMAP_CONTAINER
-- Pixmap inside button

feature -- Event - command association
add_click_command (command: EV_COMMAND; arguments: EV_ARGUMENTS)
-- Add 'command’ to the list of commands to be
-- executed when the button is pressed
require
valid_command: command /= void

end-- classEV_BUTTON

3.2.2 EV_TOGGLE_BUTTON

Toggle Button

Toggle Button

23 Functional Requirements §3.2

EV_TOGGLE_BUTTON is a descendant &v_BUTTON and is very similar, except

that it will always be in one of two states, alternated by a click. A toggle button may be
depressed, and when clicked again, it will pop back up. Click again, and it will pop back
down.

Toggle buttons are the basis for check buttons and radio buttons, as such, many of
the calls used for toggle buttons are inherited by radio and check buttons.

The default state after creation is ‘not pressed’.

indexing

description: "EiffelVision toggle button. It looks and acts like a button, but is always
in one of two states,alternated by a click. Toggle button may bedepressed, and when clicked
again, it will pop backup. Click again, and it will pop back down."

status: "See notice at end of class"

id: "$Id: ev_toggle button.e,v 1.9 1998/09/28 16:12:26 samik Exp $"

date: "$Date: 1998/09/28 16:12:26 $"

revision: "$Revision: 1.9 $"

class interface
EV_TOGGLE_BUTTON

creation
make,
make_with_text

feature -- Status report

pressed: BOOLEAN
-- Is toggle pressed
require
exists:notdestroyed

feature -- Status setting

set_pressed (button_pressed: BOOLEAN)
-- Set Current toggle on and set
-- pressed to True.
require
exists:notdestroyed
ensure
correct_state: pressed = button_pressed

toggle
-- Change the state of the toggel button to
-- opposite
require
exists:notdestroyed
ensure
state_is_true: pressed rotold pressed

83.2 Primitives

24

feature -- Event - command association

add_toggle_command (command: EV_COMMAND; arguments: EV_ARGUMENTS
-- Add ‘command’ to the list of commands to be
-- executed when the button is toggled
require
valid_command: command /= void

end-- classEV_TOGGLE_BUTTON

3.2.3 EV_.CHECK_ BUTTON

_| Check Button
~ Check Button

Check buttons are similar to toggle buttons, but they look a little different. Rather th:
being buttons with a label and/or a pixmap inside them, they look like check buttons
the underlying toolkit. That means usually a small square with a label right of it.

indexing
description: "EiffelVision Check button. Widget that has a check box and a text.”
status: "See notice at end of class"
id: "$Id: ev_check_button.e,v 1.4 1998/09/28 16:12:24 samik Exp $"
date: "$Date: 1998/09/28 16:12:24 $"
revision: "$Revision: 1.4 $"

class interface
EV_CHECK _BUTTON

creation
make_with_text

end-- classEV_CHECK_BUTTON

3.2.4 EV_RADIO BUTTON

« Fadio Button
Radio Button

« Fadio Button

25 Functional Requirements §3.2

Radio buttons are similar to check buttons except that radio buttons are grouped and only
one in a group may be selected at a time. Radio buttons having the same parent belong to
the same group. Sometimes it can be possible to have several radio button groups inside
the same parent, for example a window. However, this is not a problem, because special
containers can be used to group radio buttons. For exalyleFRAME is a good
component to group radio buttons, because it also groups the buttons visually inside a
border.

Radio buttons are good for places in an application where one option is needed to select
from a short list of options.

After the creation, the radio button which was created first in the same igrpressed
and the other radio buttons of the group are not pressed.

indexing

description: "EiffelVision radio button. Radio buttons aresimilar to check buttons ex-
cept that radiobuttons are grouped so that only one may beselected at a time."

status: "See notice at end of class”

id: "$Id: ev_radio_button.e,v 1.3 1998/09/28 16:12:25 samik Exp $"

date: "$Date: 1998/09/28 16:12:25 $"

revision: "$Revision: 1.3 $"

class interface
EV_RADIO_BUTTON

creation
make_with_text

feature -- Initialization

make_with_text (par: EV_CONTAINER,; txt: STRING)
-- radio button withpar as parent antkt as
-- text label

end-- classeV_RADIO_BUTTON

3.2.5 EV_LABEL

Label

A label ia a static text that can be put anywhere in a window, such as an explanation next
to a text field.

indexing
description: "EiffelVision label"
status: "See notice at end of class"
id: "$Id: ev_label.e,v 1.7 1998/09/09 21:50:23 aitkaci Exp $"

83.2 Primitives 26

date: "$Date: 1998/09/09 21:50:23 $"
revision: "$Revision: 1.7 $"

class interface
EV_LABEL

creation
make,
make_with_text

end-- classEV_LABEL
3.2.6 EV_TEXT COMPONENT

EV_TEXT_COMPONENT is a deferred class and an ancestor for several classe
Later, it shouldl give several tools to manage a text. In particular, it will have features
find a string, cut, copy or past a part of the text.

indexing

description: "EiffelVision text component. Common ancestor for text classes likete
field and text area."

status: "See notice at end of class"

id: "$Id: ev_text component.e,v 1.3 1998/10/02 17:03:50 aitkaci Exp $"

date: "$Date: 1998/10/02 17:03:50 $"

revision: "$Revision: 1.3 $"

deferred class interface
EV_TEXT_COMPONENT

feature -- Access

text: STRING
-- Text in component
require
exists:notdestroyed

feature -- Status setting

append_text (txt: STRING)
-- Appendtxt into component.
require
exist: notdestroyed;
not_void: txt /= void

prepend_text (txt: STRING)
-- Prependxt into component.
require
exist: notdestroyed,;
not_void: txt /= void

27

Functional Requirements 83.2

select_region (start_pos, end_pos: INTEGER)
-- Select (hilight) the text between
-- start_posandend_pos
require
exist: notdestroyed;
valid_start: start_pos > @nd start_pos <= textount;
valid_end: end_pos > @nd end_pos <= textount

set_maximum_line_length (length: INTEGER)

-- Makelengththe new number of characters on a line.

-- If length< text.coutthen the text is truncated
require
exist: notdestroyed

set_position (pos: INTEGER)
-- Set current insertion position.
require
exist: notdestroyed;
valid_pos: pos > @nd pos <= textcount

set_text (txt: STRING)
-- Maketxt the newtext
require
exist: notdestroyed;
not_void: txt /= void
ensure
text_set: texis_equal (txt)

feature -- Basic operation

copy_selection
-- Copy theselected_regiom the Clipboard
-- to paste it later.
-- If the selected_regiois empty, it does
-- nothing.
require
exists:notdestroyed

cut_selection
-- Cut theselected_regioiby erasing it from
-- the text and putting it in the Clipboard
-- to paste it later.
-- If the selectd_regiorns empty, it does
-- nothing.
require
exists:notdestroyed

paste (index: INTEGER)
-- Insert the string which is in the

83.2 Primitives 28

-- Clipboard at thendexpostion in the

-- text.

-- If the Clipboard is empty, it does nothing.
require

exists:notdestroyed

search (str: STRING): INTEGER
-- Search the stringtr in the text.
-- If stris find, it returns its start
-- index in the text, otherwise, it returns
-- Void
require
exists:notdestroyed,;
valid_string: str /= void

end-- classEV_TEXT_COMPONENT

3.2.7 EV_TEXT_FIELD

Text Field

A text field allows the application user to enter one line of text. A text field has maximu
length and visible length. The text can contain alphanumeric and numeric characters
well as special characters (what? Unicode? iso8851-17?), but there is no formatting for
text. All the text in the field uses the same font and color.

Sometimes it is necessary to check the validity of text inserted using the text fie
For example, a text field can accept only numbers of even better, phone numbers in cel
format. The following is a suggestion for the validity checking:

Offer a class EV_TEXT_FILTER with a redefineable featdileer (char:
CHARACTER): BOOLEANFilter will return True if the character is valid. Another
creation procedure fa&EV_TEXT_FIELD has to be addedhake_with_filter (filter: EV_
TEXT_FILTER)This is not yet very effective. A better solution would be to create the
filter object giving a regular expression to describe the validity of the input

indexing
description: "EiffelVision text field. To query single line of text from the user"”
status: "See notice at end of class"
id: "$Id: ev_text field.e,v 1.2 1998/09/01 00:07:20 samik Exp $"
date: "$Date: 1998/09/01 00:07:20 $"
revision: "$Revision: 1.2 $"

class interface
EV_TEXT_FIELD

creation

29 Functional Requirements §3.2

make
feature-- Event - command association

add_activate_command (command: EV_COMMAND; arguments: EV_
ARGUMENTYS)
-- Add 'command’ to the list of commands to be
-- executed when the text field is activated
require
valid_command: command /= void

end-- classEV_TEXT_FIELD
3.2.8 EV_PASSWORD FIELD

A password field is a text field which can be used when querying a password in the
application. The text typed into a password entry is not shown, but for every character
typed an asterisk (*) is shown instead.

3.2.9 EV_SPINBUTTON

Spinbuttons are single line entries with two small button on the right side of the text field.
The buttons have symbols arrow up and arrow down. The contents of spinbutton can only
be numeric. When pressing the up button and down buttons, the value of the entry
respectively increased and decreased of the chosen value.

3.2.10 EV_COMBO_BOX
A combo box contains of a text field a button. When the button is pressed, a list of

possible choices is opened. Text can either be typed in to the entry field or selected from
the list.

3.2.11 EV_TEXT_AREA

This is a Te=t Area with
several lines.

A text area is like a text field, but with a possibility to enter multiple lines. The property
maximum length controls the number of characters on one line. When typed more
characters, the cursor is automatically moved to the next line. A text area will have two
creation routines, one to create a text area with or without scrollbars.

83.2 Primitives

30

indexing
description: "EiffelVision text area. To query multiple lines of text from the user"”
status: "See notice at end of class"
id: "$Id: ev_text _area.e,v 1.1 1998/08/18 01:47:04 samik Exp $"
date: "$Date: 1998/08/18 01:47:04 $"
revision: "$Revision: 1.1 $"

class interface
EV_TEXT_AREA

creation
make

end-- classEV_TEXT_AREA

3.2.12 EV_TEXT_EDITOR

A text editor is a complete multi-line text widget with text editing features. The text insid
have several different colors and fonts.

3.2.13 EV_SEPARATOR

Separators are simple widgets that display one or several lines. They are used to sep
two areas on the screen. Separators are usually used in menus, but can be used in
widgets too.

This single class specifies the direction and style of all separators. The relevant feature:
set_double_dashed_linset_double_lineset no_line set_single _dashed_linendset_
single_line The direction can be set B¢t horizontahnd queried bys_horizontal

3.2.14 EV_RANGE

EV_RANGE is a deferred class and a common ancestoE¥rSCROLLBAR and
EV_SCALE.

3.2.15 EV_SCROLLBAR

A scrollbar is a simple concept. It has a thumb indicating the relative position within tt
scrollable material (or position within the scrollbar) and arrows at both end to give
direction indication. Usually the thumb can be dragged to move it to a specific positic
clicking on the arrows moves it of one line unit and clicking near the arrows moves it
one page unit. The line and page units can be set by the user.

Scrollbars can be used by themselves to specify relative values such as sliders:
hi-fi system but are usually attached to something else.

EV_SCROLLBAR is a deferred class, it is the ancestor of EV_HORIZONTAL _
SCROLLBAR and EV_VERTICAL_SCROLLBAR.

31 Functional Requirements §3.2

The events that can occur on a scrollbar include the movement of the thumb and the
position being changed.

Depending on the toolkit, there may be a possibility to have acceleration of the
speed of movement of the thumb. This is usually based onmtah delayand arepeat_
delay which can be setsét _inital_delayand set_repeat _deldy Also affecting the
movement is thgranularity which will affect how much the thumb is to move as well as
the maximumand minimumof the range of movement. The routines to set the motion
affecting values arset_granularityset maximurmandset_minimumThe current position
of the thumb can be set and queried usieig valueandvaluerespectively.

3.2.16 EV_SCALE

A scale is like a scrollbar, but is used to set or represent numeric values. It can be
considered as a scrollbar with a label indicating a value. The text used for the labels in the
scale iSEV_FONTABLE.

EV_SCALE is a deferred class, ancestor of EV_HORIZONTAL_SCALE and EV_
VERTICAL_SCALE.

Like a scrollbar, a scale \has a move event and a value changed event. There are
routines to attach and remove commands from thadd (ove_actignadd_value_
changed_actiojremove_move_acticendremove_value_changed_act)on

The granularity, minimum, maximum, thumb value and orientation all have the
same meanings and associated routindS\asSCROLLBAR.

The major difference between a scrollbar and the scale is the output modes of the
scale. The scale may be set so that it only does output vaktes\jtput_onlyand have
this queriedi§_output_only. The label may be made to appear with whatever text using
the set_textfeature and queried using ttext feature. The numerical value of the scale
may be shown by setting_value_showthrough theshow_valudeature.

By default, the maximum of the scale is on the bottom for the vertical scales and on
the right for the horizontal ones. However, this default behavior can be changetl by
maximum_right_bottorand can be queried with_maximum_right_bottom.

3.2.17 EV_LIST

Listltem 1
Listltem 2

Listltem 3

A list is a component with a list of options which may be selected by a user. There may
be only one selection allowed or multiple selections allowed. The text within the list is of
typeEV_LIST_ITEM.

83.2 Primitives

32

3.2.18 EV_MULTI_COLUMN_LIST

A multi column list has the functionality of list with the difference that the item in it is of
type EV_MULTI_COLUMN_LIST_ITEM. A multi column list item consists of
several parts so that each part is the list item represents the item in one column. A ir
column list also have a title row which is displayed on top of the list. The title rov
controls which columns are visible and what is the visible size of the columns. Colum
can be added, removed and resized.

3.2.19 EV_TREE

A tree is a component which allows data to be represented hierarchically. A single d
item in a tree is of typEV_TREE_ITEM.

3.2.20 EV_MENU

A menu is a rectangular area with a vertical list of menu items. Each menu item is of ty
EV_MENU_ITEM.

indexing

description: "EiffelVision menu. Menu contains menu items several menu items a
shows them when the menu is opened.”

status: "See notice at end of class"

id: "$Id: ev_menu.e,v 1.4 1998/09/11 00:53:19 samik Exp $"

date: "$Date: 1998/09/11 00:53:19 $"

revision: "$Revision: 1.4 $"

class interface
EV_MENU

creation
make_with_text

feature -- Implementation
implementation: EV_MENU_|

end-- classeV_MENU

3.2.21 EV_MENU_ITEM

A menu item is a component that can be put on a menu. Menu item is shown as a p
of text.

indexing

description: "EiffelVision menu item. Item that must be put in an EV_MENU_ITEM
CONTAINER."

status: "See notice at end of class"

33

Functional Requirements 83.2

id: "$Id: ev_menu_item.e,v 1.5 1998/09/22 21:40:29 aitkaci Exp $"

date: "$Date: 1998/09/22 21:40:29 $"
revision: "$Revision: 1.5 $"

class interface
EV_MENU_ITEM

creation
make_with_text

feature -- Status report

insensitive: BOOLEAN

-- |Is current item insensitive to
-- user actions?
require

exists:notdestroyed

feature-- Status setting

set_insensitive (flag: BOOLEAN)

-- Set current item in insensitive mode if
-- flag.
require

exists:notdestroyed
ensure
flag = insensitive
feature-- Implementation

implementation: EV_MENU_ITEM _|I

end-- classeV_MENU _ITEM

3.2.22 EV_MENU_BAR

File Edit Test

Selection 1
=election 2
selection 3

=ub menul e

A menu bar is a group of menu-bar items that appears on the top of a window. Menus.

combo-box, text fields are menu-bar items.

83.3 Drawables

34

indexing
description: "EiffelVision menu bar. Menu bar is a vertical the screen or in the windoy
containing menu items."

status: "See notice at end of class"

id: "$Id: ev_menu_bar.e,v 1.3 1998/09/29 02:01:21 aitkaci Exp $"
date: "$Date: 1998/09/29 02:01:21 $"

revision: "$Revision: 1.3 $"

class interface
EV_MENU_BAR

creation
make

end-- classeEV_MENU_BAR

3.2.23 EV_OPTION_MENU

An option menu looks like a button. When it is clicked a menu of choices is opened. T
user can select a choice in the menu. The selected item is shown as a label of the o}
menu button. On Windows there is no native option menu component, but a read-o
combo box can be used instead.

3.2.24 EV_FRAME
A frame is simple widget that draws a border around its children.
3.2.25 EV_PROGRESSBAR

A progressbar can be used to show progress in the application, for example, to show
progress in compilation.

3.3 Drawables

3.3.1 EV_DRAWABLE

A drawable is a common ancestor for component that can contain pictures. These picti
can be pixmaps or drawn using figures (see section 3.9).

3.3.2 EV_SCREEN

A screen is a drawable and refers to the screen outside the applications windows. By u
the clas€EV_SCREEN the application can draw figures and pixmaps anywhere on th
screen without even having to open any windows.

35 Functional Requirements 83.3

3.3.3 EV_DRAWING_AREA
Drawing area is a widget that can contain pictures.

3.3.4 EV_PIXMAP

Eiffel
Power”

ffﬂrn '5E
NN

A pixmap is a picture consisting of several pixels of possibly different colors (pixmap =
pixel map). The current implementation of pixmap is a pixmap widget, but pixmap should
exist as a separate structure. The pixmap widget should be removed completely and used
drawable with a pixmap component instead.

Pixmap is itself a drawable, but it can be put inside of any drawable.

indexing
description: "EiffelVision pixmap. Pixmap is a data structure that contains a picture."”
status: "See notice at end of class”
id: "$ld: ev_pixmap.e,v 1.3 1998/09/17 22:59:47 samik Exp $"
date: "$Date: 1998/09/17 22:59:47 $"
revision: "$Revision: 1.3 $"

class interface
EV_PIXMAP

creation
make,
make_from_file

83.4 Containers

36

feature -- Element change

read_from_file (file_name: STRING)
-- Load the pixmap described in 'file_name’.
-- If the file does not exist, an exception is
-- raised.
-- What about a file in wrong format?
require
file_name_exists: file_name /= void

end-- classEV_PIXMAP
3.4 Containers

A container is a widget which allows other widgets, called its ‘children’, to be put insid
it. Some of the containers allow only one child. However, because the child can also
container, it is possible to put several widgets inside any container. See the discus:
about containers fixed, box, etc...

Usually container manages its children. It means that the size and position of a ct
are specified by the container. The child can only specify its size and location under
restrictions of the container. For example, child can set the minimum size, but not t
actual size. Also the attributegutomatic_positionand automatic_resizeof EV_
WIDGET control the appearance of the child inside a container. The only contain
which does not manage its child is fixed container.

indexing

description: "EiffelVision container. Container is a widget that can hold children in-
side it"

status: "See notice at end of class"

id: "$Id: ev_container.e,v 1.6 1998/09/29 02:01:18 aitkaci Exp $"

date: "$Date: 1998/09/29 02:01:18 $"

revision: "$Revision: 1.6 $"

deferred class interface
EV_CONTAINER

feature -- Access

client_height: INTEGER

-- Height of the client area (area of the
-- widget excluding the borders etc) of
-- container

require
exists:notdestroyed

ensure
positive_result: Result >= 0

client_width: INTEGER
-- Width of the client area (area of the

37 Functional Requirements 8§3.4

-- widget excluding the borders etc) of
-- container
require
exists:notdestroyed
ensure
positive_result: Result >= 0

manager: BOOLEAN
-- Manager container manages the geometry of its
-- child(ren). Default True.

end-- classeV_CONTAINER

3.4.1 EV_WINDOW

— = - F X

A window is a bordered rectangular area visible on the screen. A window is a basic GUI
component and a basis for almost every application. A window is a container and any
widget, except for a window, can be put inside it. A window also has properties menubar,
toolbar and statusbar. All of them can be visible on non visible. A menubar is the topmost
component in the window, just below the window borders. A toolbar is located just below

the menubar. A statusbar is the component on the bottom of the wiSthawld we

allow floating menu- or toolbars?. The class interface is presented below.

indexing
description: "EiffelVision window. Window is a visible window on the screen."
status: "See notice at end of class"
id: "$Id: ev_window.e,v 1.12 1998/10/02 17:02:04 aitkaci Exp $"
date: "$Date: 1998/10/02 17:02:04 $"
revision: "$Revision: 1.12 $"

83.4 Containers

class interface
EV_WINDOW

creation
make,
make_top_level

feature -- Access

icon_mask: EV_PIXMAP
-- Bitmap that could be used by window manager
-- to clipicon_pixmapbitmap to make the
-- icon nonrectangular
require
exists:notdestroyed

icon_name: STRING
-- Short form of application name to be
-- displayed by the window manager when
-- application is iconified
require
exists:notdestroyed

icon_pixmap: EV_PIXMAP
-- Bitmap that could be used by the window manager
-- as the application’s icon
require
exists:notdestroyed
ensure
valid_result: Result /= void

parent: EV_WINDOW
-- The parent of the Current window: a window.
-- If the window is a top level, this attribute
-- isVoid.
-- (from EV_WIDGEY

title: STRING
-- Application name to be displayed by
-- the window manager
require
exists:notdestroyed

widget_group: EV_WIDGET
-- Widget with wich current widget is associated.
-- By convention this widget is the "leader" of a group
-- widgets. Window manager will treat all widgets in
-- a group in some way; for example, it may move or

39 Functional Requirements 8§3.4

-- iconify them together
require
exists:notdestroyed

feature-- Measurement

maximum_height: INTEGER
-- Maximum height that application wishes widget
-- instance to have
require
exists:notdestroyed
ensure
Result >=0

maximum_width: INTEGER
-- Maximum width that application wishes widget
-- instance to have
require
exists:notdestroyed
ensure
Result >=0

feature -- Status report

is_iconic_state: BOOLEAN
-- Does application start in iconic state?
require
exists:notdestroyed

feature -- Status setting

set_iconic_state
-- Set start state of the application
-- to be iconic.
require
exists:notdestroyed

set_maximize_state
-- Set start state of the application to be
-- maximized.
require
exists:notdestroyed

set_normal_state
-- Set start state of the application to be normal.
require
exists:notdestroyed

feature-- Element change

83.4 Containers

set_close_command (c: EV_COMMAND)

set_icon_mask (mask: EV_PIXMAP)
-- Seticon_masko mask
require
exists:notdestroyed,;
not_mask_void: mask /= void

set_icon_name (new_name: STRING)
-- Seticon_nameo new_name
require
exists:notdestroyed;
valid_name: new_name /= void

set_icon_pixmap (pixmap: EV_PIXMAP)
-- Seticon_pixmapto pixmap
require
exists:notdestroyed;
not_pixmap_void: pixmap /= void

set _title (new_title: STRING)
-- Settitle to new_title
require
exists:notdestroyed;
not_title_void: new_title /= void

set_widget_group (group_widget: EV_WIDGET)
-- Setwidget_groupto group_widget
require
exists:notdestroyed

feature-- Resizing

set_maximum_height (max_height: INTEGER)
-- Makemax_heighthe newmaximum_height
require
exists:notdestroyed;
large_enough: max_height >=0
ensure
max_height = max_height

set_maximum_width (max_width: INTEGER)
-- Makemax_widththe newmaximum_width
require
exists:notdestroyed;
large_enough: max_width >=0
ensure
max_width = max_width

41 Functional Requirements 8§3.4

end-- classeV_WINDOW

3.4.2 EV_DIALOG

Dialog is a special window which can be used for pop-up messages to the user, and other
similar tasks.

3.4.3 EV_PRINT_DIALOG

3.4.4 EV_COLOR_SELECTION_DIALOG
3.4.5 EV_FONT_SELECTION_DIALOG
3.4.6 EV_FILE_SELECTION_DIALOG
3.4.7 EV_FILE_OPEN_DIALOG

3.4.8 EV_FILE_SAVE_DIALOG

3.4.9 EV_INPUT_DIALOG

3.4.10 EV_MESSAGE_DIALOG

3.4.11 EV_INFORMATION_DIALOG
3.4.12 EV_QUESTION_DIALOG

3.4.13 EV_WARNING_DIALOG

3.4.14 EV_ERROR_DIALOG

3.4.15 EV_FIXED

Fixed is an invisible container that allows unlimited number of other widgets to be put
inside it. The location of widgets inside a fixed widget is specified by coordinates relative
to the top left corner of fixed. The coordinates are widget attribiaesly. Fixed is the

only container that allow the children specify their location and size freely.

indexing

description: "EiffelVision fixed. Invisible container that allows unlimited number of
other widgets to be put inside it. The location of each widget inside is specified by the coordi-
nates of the widget."

status: "See notice at end of class”

id: "$Id: ev_fixed.e,v 1.5 1998/09/29 02:01:18 aitkaci Exp $"

date: "$Date: 1998/09/29 02:01:18 $"

83.4 Containers

42

revision: "$Revision: 1.5 $"

class interface
EV_FIXED

creation
make

feature -- Access
manager: BOOLEAN

end-- classeV_FIXED

3.4.16 EV_BOX

Box, like fixed, is meant to be used to collect other widgets and control their appearan
Using box, widgets can be packed horizontally or vertically. Box controls the position
the widgets inside it and it can do automatic resizing. Widget inside a box can be use
right justified or left justiiedEV_BOX is a deferred class, with effective descendants
horizontal box and vertical box.

By default a box is homogeneous, which means that the space for all the childt
are is be the same size than the space for the largest child. Children can be resized t
the space of to be in the center of the space (controlled by widget’s attahtdesatic
resizeandautomatic_positionp Box can be set to non homogeneous by using the featur
set_homegeneouwsth a parametefalse If the box is non homogeneous, each child has
a space relative to the size of the child itself.

The default spacing between the children is 0. That can be changed by the feat
set_spacing

indexing

description: "EiffelVision box. Invisible container that allows unlimited number of oth-
er widgets to be packed inside it. Box controls the location the children%’s location and si
automatically.”

status: "See notice at end of class"

id: "$ld: ev_box.e,v 1.8 1998/09/29 02:01:17 aitkaci Exp $"

date: "$Date: 1998/09/29 02:01:17 $"

revision: "$Revision: 1.8 $"

deferred class interface
EV_BOX

feature -- Element change (box specific)

set_homogeneous (homogeneous: BOOLEAN)
-- Homogenous controls whether each object in
-- the box has the same size. If homogenous =
-- True, expand argument for each child is

43 Functional Requirements 8§3.4

-- automatically True
require
exist: notdestroyed

set_spacing (spacing: INTEGER)
-- Spacing between the objects in the box
require
exist: notdestroyed

end-- classeV_BOX

3.4.17 EV_VERTICAL_BOX

Fress me

Button with a wery long label
Buttond

A box in vertical position.

indexing
description: "EiffelVision vertical box."
status: "See notice at end of class"
id: "$1d: ev_vertical_box.e,v 1.4 1998/09/29 02:01:22 aitkaci Exp $"
date: "$Date: 1998/09/29 02:01:22 $"
revision: "$Revision: 1.4 $"

class interface
EV_VERTICAL_BOX

creation
make

end-- classeV_VERTICAL_BOX

3.4.18 EV_HORIZONTAL_BOX

Fress me Button with a wery long label Button3

A box in horizontal position.

83.4 Containers

44

indexing
description: "EiffelVision horizontal box."
status: "See notice at end of class"
id: "$Id: ev_horizontal_box.e,v 1.4 1998/09/29 02:01:19 aitkaci Exp $"
date: "$Date: 1998/09/29 02:01:19 $"
revision: "$Revision: 1.4 $"

class interface
EV_HORIZONTAL_ BOX

creation
make

end-- classEV_HORIZONTAL_BOX

3.4.19 EV_TABLE

Tables are another way to pack widgets. Table contains a grid of rows and columns wt
the widgets are placed in. The widgets may take up as many spaces in the tabl
specified.

The homogeneous attribute of the table has to do with how the table’s boxes
sized. If homogeneous Tsue, the table boxes are resized to the size of the largest widge
in the table. If homogeneoushsalse the size of a table boxes is dictated by the tallest
widget in its same row, and the widest widget in its column.

The rows and columns are laid out from O to n, where n is the last row or colum
A table layout with two rows and two columns is presented in Figure 3.4.20.

0 1 2

Figure 3.4.20Table layout with two rows and two columns

The coordinate system starts in the upper left hand corner.

45 Functional Requirements 8§3.4

3.4.21 EV_SCROLLABLE_AREA

Ll

iffelVision
Vs |

|~ | -

Scrollable area is a container widget with horizontal and vertical scrollbars around it. Any
widget, except for a window, can be put inside a scrollable area the scrollable area offers
automatic scrolling. If the widget inside is bigger than the visible size of scrollable area,
the scrollbars can be used to move the view of the widget. Size of the thumbs of the
scrollbar corresponds to the visible size of the widget (the size of the scrollable area) and
the size of the whole scrollbar corresponds to the size of the whole widget.

indexing

description: "EiffelVision scrollable area. Scrollable area is a container with scroll-
bars. Scrollable area offers automatic scrolling for its child."

status: "See notice at end of class"

id: "$Id: ev_scrollable_area.e,v 1.2 1998/09/11 19:53:11 samik Exp $"

date: "$Date: 1998/09/11 19:53:11 $"

revision: "$Revision: 1.2 $"

class interface
EV_SCROLLABLE_AREA

creation
make

end-- classEV_SCROLLABLE_AREA

83.4 Containers

46

3.4.22 EV_SPLIT_AREA

Hello

Split area is a container widget with two children with groove drawn between them. T
user can control the relative size of the two parts by moving the groove. Split area car
either horizontal of vertical.

indexing

description: "EiffelVision split area. Split consists of two parts divided by a groove
which can be moved by the user to change the visible portion of the parts. Split is an abst
class with effective decendants horizontal and vertical split.”

status: "See notice at end of class"

id: "$Id: ev_split_area.e,v 1.3 1998/09/29 02:01:22 aitkaci Exp $"

date: "$Date: 1998/09/29 02:01:22 $"

revision: "$Revision: 1.3 $"

deferred class interface
EV_SPLIT_AREA

end-- classEV_SPLIT_AREA

47 Functional Requirements 83.4

3.4.23 EV_NOTEBOOK

Button | Fi<map 1 Fixmap 2

Notebook is a collection of pages that overlap each other. For each page there is a tab
corresponding to the page. Only one of the pages is visible, but the tabs are visible either
top, bottom, left or right of the page. When the tab is clicked, the corresponding page is
made visible. If there is a lot of tabs, it is usually not possible to show them all at the same
time. The number of visible tabs can be set. If there is more tabs than visible tabs, scroll
buttons are shown and they can be used to control which of the tabs are visible.

Each page is a container that allows one widget to be put inside it. Pages can be
added to and removed from the notebook.

indexing

description: "EiffelVision notebook. Notebook is a collection of pages that overlap
each other. For each page there is a tab corresponding to the page.”

status: "See notice at end of class"

id: "$Id: ev_notebook.e,v 1.3 1998/08/08 21:08:20 samik Exp $"

date: "$Date: 1998/08/08 21:08:20 $"

revision: "$Revision: 1.3 $"

class interface
EV_NOTEBOOK

creation
make

83.5 Events

48

feature -- Status setting

set_tab_left

-- set position of tabs to left

require

exists:notdestroyed

feature -- Element change

append_page (c: EV_WIDGET,; label: STRING)
-- New page for notebook containing child 'c’ with tab

-- label 'label

require

exists:notdestroyed;
child_of _notebook:.parent = Current

end-- classeV_NOTEBOOK

3.5 Events

EiffelVision has general events, which are common for all the widgets, and widg

specific events.

3.5.1 General Events

The following list describes the general events.

button press
button release
double click
motion notify
delete

expose

key press

key release
enter notify
leave notify

more??

A mouse button is pressed over the widget.

A mouse button is released over the widget.

a mouse button is double clicked over the widget.
Mouse pointer is moved over the widget.

The widget is deleted.

A part of the widget has to be redrawn because it wa
exposed from behind another widget.

A key is pressed over the widget.
A key is released over the widget.
Mouse pointer is enters the area of widget.

Mouse pointer leaves the area of widget.

49 Functional Requirements 8§3.6

3.5.2 Widget Specific Events

As the name suggests these events are specific for each widget. For example, button has
a click event which happens when a button widget is clicked. For information on events
specific to a widget, see the definition of widget in section 3.1.

3.6 Commands

A command is an object created by the library user to perform some action in response
to an event. EiffelVision offers a deferred cl&¢ COMMAND. The library user can
inherit from EV_COMMAND, to define a new command class and redefine feature
execute The routineexecutds executed in response to an event.

indexing

description: "General notion of command (semantic unity). To write an actual com-
mand inherit from this class and implement the ‘execute%’ feature"

status: "See notice at end of class"

date: "$Date: 1998/08/28 01:16:17 $"

revision: "$Revision: 1.2 $"

deferred class interface
EV_COMMAND

feature-- Access

event_data: EV_EVENT_DATA
-- Information related to Current command,
-- provided by the underlying user interface
-- mechanism

feature -- Status report
--XX check the purpose of this this

event_data_useful: BOOLEAN
-- Should the context data be available
-- when Current command is invoked as a
-- callback

is_template: BOOLEAN
-- Is the current command a template, in other words,
-- should it be cloned before execution?
-- If true, EiffelVision will clone Current command
-- whenever it is invoked as a callback

feature -- Basic operations
execute (arguments: EV_ARGUMENTYS)

-- Execute Current command.
-- argumentss automatically passed by

83.7 Arguments

50

-- EiffelVision when Current command is
-- invoked as a callback.

execute_address: POINTER
-- Address of feature execute

end-- classeV_COMMAND

The above specification and class interface are only temporary. The fin
implementation will use routine objects when they are available. It means that the libre
user doesn’t have to create a new class for each command by inheritinde¥fom
COMMAND.Instead there are two choices for EiffelVision: one approach would be t
have a class EV_COMMAND with a creation routine taking a routine object and the us
argument (a tuple) as arguments. Then the execution function of this command wo
execute the routine abject with the argument and the event_data as parameters. The
choice is just to put the routine object as an argumeraddrcommandeatures.

3.7 Arguments

Arguments for commands are currently passed using an object of EMss
ARGUMENTS and its descendants. However, the final implementation will use tuple
instead, when available.

Thanks to the tuple mechanism, argument types are checked at compile time, so
the argument passing mechanism is type-safe.

3.8 Event Data

Event data is information specific to an event, for example, the location of the mou
pointer. Widget specific events do not have any event data.

indexing

description: "EiffelVision event data. Information given byEiffelVision when a call-
back is triggered.This is the base class for representing event data"

status: "See notice at end of class"

id: "$Id: ev_event_data.e,v 1.7 1998/09/29 02:01:16 aitkaci Exp $"

date: "$Date: 1998/09/29 02:01:16 $"

revision: "$Revision: 1.7 $"

class interface
EV_EVENT_DATA

creation
make

feature -- Access

51 Functional Requirements 83.8

widget: EV_WIDGET
-- The mouse pointer was over this widget
-- when event happened
feature-- Debug
print_contents
end-- classEV_EVENT_DATA
3.8.1 EV._BUTTON_EVENT DATA

This class represents event data for button events: button press, button release and double
click.

indexing
description: "EiffelVision button event data.Class for representing button event data"
status: "See notice at end of class"
id: "$Id: ev_button_event_data.e,v 1.6 1998/08/28 00:44:12 samik Exp $"
date: "$Date: 1998/08/28 00:44:12 $"
revision: "$Revision: 1.6 $"

class interface
EV_BUTTON_EVENT_DATA

creation
make

feature-- Access
button: INTEGER
keyval: INTEGER
state: INTEGER

x: DOUBLE
-- X coordinate of mouse pointer

y: DOUBLE
-- y coordinate of mouse pointer

feature-- Debug

print_contents
-- print the contents of the object

end-- classEV_BUTTON_EVENT_DATA

83.8 Event Data 52

3.8.2 EV_MOTION_EVENT_DATA

indexing

description: "EiffelVision motion event data.Class for representing motion ever
data"

status: "See notice at end of class"

id: "$Id: ev_motion_event_data.e,v 1.5 1998/09/03 23:32:20 samik Exp $"

date: "$Date: 1998/09/03 23:32:20 $"

revision: "$Revision: 1.5 $"

class interface
EV_MOTION_EVENT_DATA

creation
make

feature -- Initialization
make

feature-- Access
state: INTEGER

x: DOUBLE
-- X coordinate of mouse pointer

y: DOUBLE
-- y coordinate of mouse pointer

feature-- Debug

print_contents
-- print the contents of the object

end-- classEV_MOTION_EVENT_DATA
3.8.3 EV_KEY_EVENT_DATA

indexing
description: "EiffelVision key event data.Class for representing button event data"
status: "See notice at end of class"
id: "$ld: ev_key_event_data.e,v 1.1 1998/08/28 00:44:15 samik Exp $"
date: "$Date: 1998/08/28 00:44:15 $"
revision: "$Revision: 1.1 $"

class interface
EV_KEY_EVENT_DATA

53 Functional Requirements 8§3.9

creation
make

feature-- Access
keyval: INTEGER
length: INTEGER
state: INTEGER
string: STRING
feature-- Debug

print_contents
-- print the contents of the object

end-- classeV_KEY_ EVENT_DATA
3.9 Figures

Figures work as in old EiffelVision and the implementation will be taken from there as
far as possible.

3.10 Timers?

3.11 Other notes
Colormap handling under X Windows System so that it always gets the closest color.
3.12 Using the Library

EiffelVision has been designed to be simple to use and still effective. This section gives
examples of using the library.

The following class implements a main window of an EiffelVision example. The
main window consist of button box with toggle buttons containing label and text. Each
button is associated to a command, which opens a demo window.

indexing

description: "MAIND_WINDOW, main window for the application. Belongs to
EiffelVision example.";

status: "See notice at end of class";

id: "$Id: main_window.e,v 1.18 1998/09/23 00:11:28 samik Exp $";

date: "$Date: 1998/09/23 00:11:28 $";

revision: "$Revision: 1.18 $"

83.12 Using the Library 54

classMAIN_WINDOW

inherit
EV_WINDOW
redefine
make_top_level
end
EV_COMMAND

creation
make_top_level

feature --Access

container: EV_VERTICAL_BOX;
-- Push buttons

current_demo_window: DEMO_WINDOW;
feature -- Initialization

make_top_levas

local
b: MAIN_WINDOW_BUTTON;
cl: LABEL_DEMO_WINDOW;
c2: FIXED_DEMO_WINDOW;
c3: BOX_DEMO_WINDOW;
c4: NOTEBOOK_DEMO_WINDOW,;
c5: TEXT_FIELD_DEMO_WINDOW,;
c6: TEXT_AREA_DEMO_WINDOW;
c7: MENU_DEMO_WINDOW;
c8: SPLIT_AREA_DEMO_WINDOW,;
c9: SCROLLABLE_AREA_DEMO_WINDOW;
c10: BUTTONS_DEMO_WINDOW

do
precursor,
Il containermake (Current);
I cl.make (Current);
I c2.make (Current);
I c3.make (Current);
Il c4.make (Current);
I c5.make (Current);
Il c6.make (Current);
I c7.make (Current);
I c8.make (Current);
I c9.make (Current);
I c10.make (Current);
Il b.make_button (Current, "Label", ", cl);
I b.make_button (Current, "Buttons”, "../pixmaps/buttons.xpm", c10);

55 Functional Requirements §3.12

I b.make_button (Current, "Fixed", "../pixmaps/fixed.xpm", c2);
Il b.make_button (Current, "Box", "../pixmaps/box.xpm", c3);
II' b.make_button (Current, "Notebook", "../pixmaps/notebook.xpm",

c4),

II' b.make_button (Current, "Text field", "../pixmaps/text_field.xpm",
c5);

II' b.make_button (Current, "Text area”, "../pixmaps/text_area.xpm",
c6);

Il b.make_button (Current, "Menu", "../pixmaps/menu.xpm", c7);

Il b.make_button (Current, "Split area", "../pixmaps/split_area.xpm"”,
c8);

II' b.make_button (Current, "Scrollable area”, "../pixmaps/scrollable_
area.xpm", c9);
set_values
end

feature -- Status setting

execute (arg: EV_ARGUMENT1 [DEMO_WINDOWg))
-- called when actions window is deleted

do
arg.first.effective_buttoset presseddlse)
arg.first.actions_windowdestroy
set_insensitivefglse)

end

feature-- Status setting

set_valuess
do
set_title ("Test all widgets")
end

end-- classMAIN_WINDOW

The following class presents the main window button used in the code example of
main window. Together these example show how to create a complete user interface
easily. The interface is built without specifying any coordinates nor sizes for the widgets.
Everything is calculated automatically at run time. The example will be even simpler
when tuples and routine objects are available and used in command and argument
implementation.

indexing

description: "main window button for the application. Belongs to EiffelVision
example.";

status: "See notice at end of class";

id: "$1d: main_window_button.e,v 1.5 1998/09/22 22:32:34 samik Exp $";

date: "$Date: 1998/09/22 22:32:34 $";

revision: "$Revision: 1.5 $"

83.12 Using the Library 56

classMAIN_WINDOW_BUTTON

creation
make_button

feature {NONE} -- Initialization

initialize (par: EV_CONTAINERs
-- Common initialization for buttons
-- (fromEV_BUTTON
do
widget_make (par)
Il pixmap_containemake_from_primitive (Current)
end

make (par: EV_CONTAINERY
-- Empty button
-- (from EV_TOGGLE_BUTTON
do
IEV_TOGGLE_BUTTON_IMP! implementatiomake (par)
initialize (par)
end

make_with_text (par: EV_CONTAINER,; txt: STRINSS)

-- Button with 'par’ as parent and 'txt’ as
-- text label
-- (from EV_TOGGLE_BUTTON

do
IEV_TOGGLE_BUTTON_IMP! implementatioreke_with_text (par,

txt)

initialize (par)

end

widget_make (par: EV_CONTAINER)

-- Create a widget witpar as parent and
-- call set_default
-- This is a general initialization for
-- widgets and has to be called by all the
-- widgets with parents.
-- (from EV_WIDGEY

require -- from EV_WIDGET
valid_parent: par /= void

do
parent := par
set_default

ensure-- from EV_WIDGET
parent_set: parenthild = Currentand par = parent;
exists:notdestroyed

end

57 Functional Requirements §3.12

feature {NONE} -Initialization

make_button (main_w: MAIN_WINDOW,; button_name, pixmap_file_name: STRING;
cmd: DEMO_WINDOWis
local
p: EV_PIXMAP;
a: EV_ARGUMENT2 [MAIN_WINDOW, EV_TOGGLE_BUTTON]
do
make (main_veontainer);
set_text (button_name);
if pixmap_file_name /= voié&nd then nopixmap_file_namempty
then
Il p.make_from_file (pixmap_container, pixmap_file_name)
end
Il'a.make_2 (main_w, Current);
add_toggle_command (cmd, a)
end

feature -- Access

font: EV_FONTis
-- Font name of label
-- (from EV_FONTABLIE
require -- from EV_FONTABLE
exists:notdestroyed
do
Result := implementatiafont
end

parent: EV_CONTAINER,;
-- Parent container of this widget
-- (from EV_WIDGET

pixmap_container: EV_PIXMAP_CONTAINER,;
-- Pixmap inside button
-- (from EV_BUTTON

text: STRINGs
-- Text of current label
-- (from EV_TEXT_CONTAINER
require -- from EV_TEXT_CONTAINER
exists:notdestroyed
do
Result := implementatiatext
end

feature-- Measurement
-- The coordinates are effective only if widget is inside a

83.12 Using the Library

58

-- fixed container. Otherwise they are calculated
-- automatically by the container widget.

height: INTEGERs
-- Height of widget
-- (from EV_WIDGEY
require -- from EV_WIDGET
exists:notdestroyed
do
Result := implementatiaheight
ensure-- from EV_WIDGET
positive_height: Result >= 0
end

maximum_height: INTEGER
-- Maximum height that application wishes widget
-- instance to have
-- (from EV_WIDGET
require -- from EV_WIDGET
exists:notdestroyed
do
Result := implementatiamaximum_height
ensure-- from EV_WIDGET
Result >=0
end

maximum_width: INTEGER

-- Maximum width that application wishes widget
-- instance to have
-- (from EV_WIDGEY

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementatiamaximum_width

ensure-- from EV_WIDGET
Result >=0

end

minimum_height: INTEGER

-- Minimum height that application wishes widget
-- instance to have
-- (from EV_WIDGEY

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementatiaminimum_height

ensure-- from EV_WIDGET
positive_height: Result >= 0

end

59 Functional Requirements §3.12

minimum_width: INTEGER

-- Minimum width that application wishes widget
-- instance to have
-- (from EV_WIDGEY

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementatiaminimum_width

ensure-- from EV_WIDGET
positive_height: Result >= 0

end

width: INTEGERS
-- Width of widget
-- (from EV_WIDGEY
require -- from EV_WIDGET
exists:notdestroyed
do
Result := implementatiawidth
ensure-- from EV_WIDGET
positive_width: Result >=0
end

x: INTEGERis
-- Horizontal position relative to parent
-- (from EV_WIDGEY
require -- from EV_WIDGET
exists:notdestroyed;

unmanagednotmanaged
do
Result := implementatiar
end
y: INTEGERis

-- Vertical position relative to parent
-- (from EV_WIDGEY

require -- from EV_WIDGET
exists:notdestroyed;
unmanagednotmanaged

do
Result := implementatiag

end

feature-- Comparison
same (otherlike Current): BOOLEANSs

-- Does Current widget arathercorrespond
-- to the same screen object?

§3.12

Using the Library 60

-- (from EV_WIDGEY
require -- from EV_WIDGET

other_exists: other /= void
do

Result := othelimplementation = implementation
end

feature -- Status report

automatic_position: BOOLEAN;
-- Does the widget take a new position when
-- the parent resize ? (If it does, its size
-- doesn’t changed). False by default
-- (from EV_WIDGEY

automatic_resize: BOOLEAN;
-- Is the widget resized automatically when
-- the parent resize ? In this case,
-- automatic_position has no effect. True by
-- default
-- (from EV_WIDGEY

destroyed: BOOLEAN
-- Is Current widget destroyed?
-- (= implementation does not exist)
-- (from EV_WIDGEY
do
Result := (implementation = void)
end

insensitive: BOOLEANs

-- Is current widget insensitive to
-- user actions? (If it is, events will
-- not be dispatched to Current widget or
-- any of its children)
-- (from EV_WIDGET

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementatiamsensitive

end

managed: BOOLEAN,;
-- Is the geometry of current widget managed by its
-- container? This is the case always unless
-- parent.manager = False (Always true except
-- when the container is EV_FIXED). This is
-- set in the procedure set_default
-- (from EV_WIDGET

61

Functional Requirements 83.12

pressed: BOOLEA
-- Is toggle pressed
-- (from EV_TOGGLE_BUTTON
require -- from EV_TOGGLE_BUTTON
exists:notdestroyed
do
Result := implementatiapressed
end

shown: BOOLEANs
-- Is current widget visible?
-- (from EV_WIDGEY
require -- from EV_WIDGET
exists:notdestroyed
do
Result := implementatiashown
end

feature-- Status setting

destroyis
-- Destroy actual screen object of Current
-- widget and of all children.
-- (from EV_WIDGEY
do

if notdestroyedhen
implementatiordestroy;
remove_implementation
end
ensure-- from EV_WIDGET
destroyed: destroyed
end

hideis
-- Make widget and all children (recursively)
-- invisible on the screen.
-- (from EV_WIDGEY
require -- from EV_WIDGET
exists:notdestroyed
do
implementatiorhide
ensure-- fromEV_WIDGET
not_shownnotshown
end

set_automatic_position (position: BOOLEAN!)
-- Setautomatic_positiorat position
-- (from EV_WIDGET

83.12 Using the Library

require -- from EV_WIDGET
exists:notdestroyed
do
automatic_position := position
ensure-- fromEV_WIDGET
automatic_position_set: automatic_position = position
end

set_automatic_resize (resize: BOOLEA$N)
-- Setautomatic_resiz¢o resize
-- (from EV_WIDGEY
require -- from EV_WIDGET
exists:notdestroyed
do
automatic_resize .= resize
ensure-- from EV_WIDGET
automatic_resize_set: automatic_resize = resize
end

set_center_alignmeint

-- Set text alignment of current label to center.
-- (from EV_TEXT_CONTAINER

require -- from EV_TEXT_CONTAINER
exists:notdestroyed

do
implementatiorset_center_alignment

end

set_insensitive (flag: BOOLEAN)

-- Set current widget in insensitive mode if
-- flag. This means that any events with an
-- event type of KeyPress, KeyRelease,
-- ButtonPress, ButtonRelease, MotionNotify,
-- EnterNotify, LeaveNotify, Focusin or
-- FocusOut will not be dispatched to current
-- widget and to all its children. Set it to
-- sensitive mode otherwise.
-- (from EV_WIDGEY

require -- from EV_WIDGET
exists:notdestroyed

do
implementatiorset_insensitive (flag)

ensure-- from EV_WIDGET
flag = insensitive

end

set_left_alignmens
-- Set text alignment of current label to left.
- (from EV_TEXT_CONTAINER

63

Functional Requirements 83.12

require -- from EV_TEXT_CONTAINER
exists:notdestroyed
do
implementatiorset_left_alignment
end

set_pressed (button_pressed: BOOLEAN)
-- Set Current toggle on and set
-- pressed to True.
-- (from EV_TOGGLE_BUTTON
require -- from EV_TOGGLE_BUTTON
exists:notdestroyed
do
implementatiorset_pressed (button_pressed)
ensure-- from EV_TOGGLE_BUTTON
correct_state: pressed = button_pressed
end

set_right_alignmenis

-- Set text alignment of current label to right.
-- (from EV_TEXT_CONTAINER

require -- from EV_TEXT_CONTAINER
exists:notdestroyed

do
implementatiorset_right_alignment

end

showis

-- Make widget and all children (recursively)
-- visible on the screen. (default)
-- (from EV_WIDGET

require -- from EV_WIDGET
exists:notdestroyed

do
implementatiorshow

ensure-- from EV_WIDGET
shown: shown

end

toggleis

-- Change the state of the toggel button to
-- opposite
-- (from EV_TOGGLE_BUTTON

require -- from EV_TOGGLE_BUTTON
exists:notdestroyed

do
implementatiorioggle

ensure-- fromEV_TOGGLE_BUTTON
state_is_true: pressed rotold pressed

§3.12

Using the Library

64

end
feature-- Element change

set_font (a_font: EV_FONTS
-- Set font label tdont_name
- (from EV_FONTABLE
require -- from EV_FONTABLE
exists:notdestroyed;
a_font_exists: a_font /= void;
a_font_specified: a_fong_specified
do
implementatiorset_font (a_font)
end

set_font_name (a_font_name: STRINKG)
-- Set font label t@_font_name
- (from EV_FONTABLE
require -- from EV_FONTABLE
exists:notdestroyed,;
a_font_name_exists: a_font_name /= void

local
a_font: EV_FONT
do
Il'a_fontmake;
a_fontset_name (a_font_name);
set_font (a_font)
end

set_text (txt: STRINGS
-- Set text of current label tat.
-- (from EV_TEXT_CONTAINER
require -- from EV_TEXT_CONTAINER
exists:notdestroyed;
not_a text void: txt /= void
do
implementatiorset_text (txt)
ensure-- from EV_TEXT_CONTAINER
text_set: texis_equal (txt)
end

feature-- Resizing

set_height (new_height: INTEGER)
-- Set height tmew_height
-- (from EV_WIDGEY
require -- from EV_WIDGET
exists:notdestroyed;
positive_height: new_height >= 0

65 Functional Requirements §3.12

do

implementatiorset_height (new_height)
ensure-- from EV_WIDGET

dimensions_set: implementatidimensions_set (width, new_height)
end

set_maximum_height (max_height: INTEGER)

-- Setmaximum_heightib max_height
-- (from EV_WIDGEY

require -- from EV_WIDGET
exists:notdestroyed;
large_enough: max_height >= 0

do
implementatiorset_maximum_height (max_height)

ensure-- from EV_WIDGET
max_height = max_height

end

set_maximum_width (max_width: INTEGER)
-- Setmaximum_widtho max_width
-- (from EV_WIDGEY
require -- from EV_WIDGET
exists:notdestroyed;
large_enough: max_width >=0
do
implementatiorset_maximum_width (max_width)
ensure-- fromEV_WIDGET
max_width = max_width
end

set_minimum_height (min_height: INTEGER)

-- Setminimum___heighto min_height
-- (from EV_WIDGEY

require -- from EV_WIDGET
exists:notdestroyed;
large_enough: min_height >=0

do
implementatiorset_minimum_height (min_height)

ensure-- from EV_WIDGET
min_height = min_height

end

set_minimum_size (min_width, min_height: INTEGER)
-- (from EV_WIDGET
require -- from EV_WIDGET
exists:notdestroyed;
large_enough: min_height >= 0;
large_enough: min_width >= 0
do

83.12 Using the Library 66

implementatiorset_minimum_size (min_width, min_height)
ensure-- from EV_WIDGET

min_width = min_width;

min_height = min_height
end

set_minimum_width (min_width: INTEGER)
-- Setminimum_widthto min_width
-- (from EV_WIDGET
require -- from EV_WIDGET
exists:notdestroyed;
large_enough: min_width >=0
do
implementatiorset_minimum_width (min_width)
ensure-- from EV_WIDGET
min_width = min_width
end

set_size (new_width: INTEGER; new_height: INTEGIER)
-- Set width and height toew_width
-- andnew_height
-- (from EV_WIDGET
require -- from EV_WIDGET
exists:notdestroyed,;
positive_width: new_width >= 0;
positive_height: new_height >= 0
do
implementatiorset_size (new_width, new_height)
ensure-- from EV_WIDGET
dimensions_set: implementatidimensions_set (new_width, new _
height)
end

set_width (new_width: INTEGER)
-- Set width tanew_width
-- (from EV_WIDGEY
require -- from EV_WIDGET
exists:notdestroyed;
positive_width: new_width >=0
do
implementatiorset_width (new_width)
ensure-- from EV_WIDGET
dimensions_set: implementatidimensions_set (new_width, height)
end

set x (new_x: INTEGERY
-- Set horizontal position relative
-- to parent tomew_x
-- (from EV_WIDGEY

67

Functional Requirements 83.12

require -- from EV_WIDGET
exists:notdestroyed;
unmanagednotmanaged
do
implementatiorset_x (new_x)
ensure-- from EV_WIDGET
X_set: X = new_X
end

set_x_y (new_x: INTEGER; new_y: INTEGHER)

-- Set horizontal position and
-- vertical position relative to parent
-- tonew_xandnew_y
-- (from EV_WIDGEY

require -- from EV_WIDGET
exists:notdestroyed;
unmanagednotmanaged

do
implementatiorset_x_y (new_Xx, new_y)

end

set_y (new_y: INTEGER

-- Set vertical position relative
-- to parent t;mew_y
-- (from EV_WIDGEY

require -- from EV_WIDGET
exists:notdestroyed;
unmanagednotmanaged

do
implementatiorset_y (new_y)

ensure-- from EV_WIDGET
y_set:y = new_y

end

feature {NONE} -- Implementation

implementation: EV_TOGGLE_BUTTON 1,
-- (from EV_TOGGLE_BUTTON

remove_implementatiae

-- Remove implementation of Current widget.

-- (from EV_WIDGEY
do

implementation := void
ensure-- from EV_WIDGET

void_implementation: implementation = void

end

set_defaults

83.12 Using the Library 68

-- Do the necessary initialization after
-- creation

-- Set default values of Current widget.
-- (from EV_WIDGET

do
implementatiorbuild
parentadd_child (Current)
managed := parenmanager
end

set_font_imp (an_implementation: EV_FONTABLES I)
-- Setimplementatiorto an_implementation
-- (from EV_FONTABLE
require -- from EV_FONTABLE
an_implementation_exists: an_implementation /= void
do
implementation := an_implementation
end

feature -- Event - command association

add_button_press_command (mouse_button: INTEGER; command: EV_COI
MAND; arguments: EV_ARGUMENT®S)
-- Add 'command’ to the list of commands to
-- be executed when button no 'mouse_button’
-- is pressed
-- (from EV_WIDGET
do
implementatioradd_button_press_command (mouse_button, com:
mand, arguments)
end

add_button_release_command (mouse_button: INTEGER; command: EV_COI
MAND; arguments: EV_ARGUMENT®S)
-- Add 'command’ to the list of commands to
-- be executed when button no 'mouse_button’
-- is released
-- (from EV_WIDGET
do
implementatioradd_button_release_command (mouse_button, com
mand, arguments)
end

add_click_command (command: EV_COMMAND; arguments: EV_ARGUMENTS)
-- Add ‘command’ to the list of commands to be
-- executed when the button is pressed
-- (fromEV_BUTTON
require -- from EV_BUTTON
valid_command: command /= void

69 Functional Requirements §3.12

do
implementatioradd_click_command (command, arguments)
end

add_delete_command (command: EV_COMMAND; arguments: EV_ARGUMENTYS)

-- (from EV_WIDGEY
do

implementatioradd_delete_command (command, arguments)
end

add_double_click_command (mouse_button: INTEGER; command: EV_COMMAND;
arguments: EV_ARGUMENTE)
-- Add 'command’ to the list of commands to
-- be executed when button no 'mouse_button’
-- is double clicked
-- (from EV_WIDGEY
do
implementatioradd_double_click_command (mouse_button, com-
mand, arguments)
end

add_enter_notify_command (command: EV_COMMAND; arguments: EV_ARGU-
MENTS)is
-- (from EV_WIDGEY
do
implementatioradd_enter_notify_command (command, arguments)
end

add_expose_command (command: EV_COMMAND; arguments: EV_ARGUMENTS)

-- (from EV_WIDGET
do

implementatioradd_expose_command (command, arguments)
end

add_key press_ command (command: EV_COMMAND; arguments: EV_ARGU-
MENTS)is
-- (from EV_WIDGEY
do
implementatioradd_key press_command (command, arguments)
end

add_key release_command (command: EV_COMMAND; arguments: EV_ARGU-
MENTS)is
-- (from EV_WIDGEY
do
implementatioradd_key release_command (command, arguments)
end

§3.12

Using the Library 70

add_leave notify_command (command: EV_COMMAND; arguments: EV_ARGL
MENTS)is
-- (from EV_WIDGET
do
implementatioradd_leave_notify_command (command, arguments)

end

add_motion_notify_command (command: EV_COMMAND; arguments: EV_ARGL
MENTS)is
-- (from EV_WIDGET
do
implementatioradd_motion_notify_command (command, arguments)

end
add_toggle_command (command: EV_COMMAND; arguments: EV_ARGUMENT!

-- Add ‘command’ to the list of commands to be
-- executed when the button is toggled
-- (from EV_TOGGLE_BUTTON
require -- from EV_TOGGLE_BUTTON
valid_command: command /= void
do
implementatioradd_toggle_command (command, arguments)

end

last_ command_id: INTEGER
-- Id of the last command added by feature
--’add_command’
-- (from EV_WIDGEY
require -- from EV_WIDGET
exists:notdestroyed
do
Result := implementatialast_command_id
end

remove_command (command_id: INTEGER)

-- Remove the command associated with
--’command_id’ from the list of actions for
-- this context. If there is no command
-- associated with 'command_id’, nothing
-- happens.
-- (from EV_WIDGEY

require -- from EV_WIDGET
exists:notdestroyed

do
implementatiomemove_command (command_id)

end

71

Functional Requirements 83.12

invariant
-- from GENERAL

reflexive_equality: standard_is_equal (Current);
reflexive_conformance: conforms_to (Current);

end-- classMAIN_WINDOW_BUTTON

Figure 3.12.1 shows a screenshot of the example.

83.12 Using the Library

72

Buttons

@ Fixed

Biox

e

*’" motehook
.

e T N
e —

Text area

] O %
Filg Edé Tesi Menu

&

split area

=k

= | =crollakble area

Figure 3.12.1Main windoindexing

73

Functional Requirements 83.12

	EiffelVision
	Requirements Specification
	ISE Technical Document
	Modification date: 10/12/98 Copyright ISE, 1998
	Chapter 1: ��Introduction 6
	1.1��Purpose 6
	1.2��Scope 6
	1.3��Definitions, Acronyms and Abbreviations 6
	1.4��References 7
	1.5��Overview 7

	Chapter 2: ��General Description 8
	2.1��Library Perspective 8
	2.2��Library Functions 8
	2.2.1��Graphical User Interface 8
	2.2.2��Events 9
	2.2.3��Commands 10
	2.2.4��Figures 11
	2.2.5��Drag and Drop 13
	2.2.6��Pick and Drop 13

	2.3��User Characteristics 13

	Chapter 3: ��Functional Requirements 14
	3.1��Widgets 14
	3.2��Primitives 21
	3.2.1��ev_button 21
	3.2.2��ev_toggle_button 22
	3.2.3��ev_check_button 24
	3.2.4��ev_radio_button 24
	3.2.5��ev_label 25
	3.2.6��ev_text_component 26
	3.2.7��ev_text_field 28
	3.2.8��ev_password_field 29
	3.2.9��ev_spinbutton 29
	3.2.10��ev_combo_box 29
	3.2.11��ev_text_area 29
	3.2.12��ev_text_editor 30
	3.2.13��ev_separator 30
	3.2.14��ev_range 30
	3.2.15��ev_SCROLLBAR 30
	3.2.16��ev_Scale 31
	3.2.17��ev_list 31
	3.2.18��ev_multi_column_list 32
	3.2.19��ev_tree 32
	3.2.20��ev_menu 32
	3.2.21��ev_menu_item 32
	3.2.22��EV_MENU_BAR 33
	3.2.23��ev_option_menu 34
	3.2.24��ev_frame 34
	3.2.25��ev_progressbar 34

	3.3��Drawables 34
	3.3.1��ev_drawable 34
	3.3.2��ev_screen 34
	3.3.3��ev_drawing_area 35
	3.3.4��ev_pixmap 35

	3.4��Containers 36
	3.4.1��ev_window 37
	3.4.2��ev_dialog 41
	3.4.3��ev_print_dialog 41
	3.4.4��ev_color_selection_dialog 41
	3.4.5��ev_font_selection_dialog 41
	3.4.6��ev_file_selection_dialog 41
	3.4.7��ev_file_open_dialog 41
	3.4.8��ev_file_save_dialog 41
	3.4.9��ev_input_dialog 41
	3.4.10��ev_message_dialog 41
	3.4.11��ev_information_dialog 41
	3.4.12��ev_question_dialog 41
	3.4.13��ev_warning_dialog 41
	3.4.14��ev_error_dialog 41
	3.4.15��ev_fixed 41
	3.4.16��ev_box 42
	3.4.17��ev_vertical_box 43
	3.4.18��ev_horizontal_box 43
	3.4.19��ev_table 44
	3.4.21��ev_scrollable_area 45
	3.4.22��ev_split_area 46
	3.4.23��ev_notebook 47

	3.5��Events 48
	3.5.1��General Events 48
	3.5.2��Widget Specific Events 49

	3.6��Commands 49
	3.7��Arguments 50
	3.8��Event Data 50
	3.8.1��ev_button_event_data 51
	3.8.2��ev_motion_event_data 52
	3.8.3��ev_key_event_data 52

	3.9��Figures 53
	3.10��Timers? 53
	3.11��Other notes 53
	3.12��Using the Library 53

	1 �� Introduction
	1.1 Purpose
	This document is the functional specification of E...
	The audience of this document are the developers a...

	1.2 Scope
	This library is a new version of ISE’s EiffelVisio...
	EiffelVision is a software library for application...

	1.3 Definitions, Acronyms and Abbreviations
	1.4 References
	1.5 Overview
	Chapter 2 describes the general factors that affec...

	2 �� General Description
	2.1 Library Perspective
	EiffelVision is an abstract, is multi-platform lib...

	2.2 Library Functions
	The main functions of the library are to provide c...
	2.2.1 Graphical User Interface
	EiffelVision provides a set of GUI components and ...
	Figure 1 Class hierarchy for EiffelVision widgets
	Most of the widgets in EiffelVision have events an...

	2.2.2 Events
	An event is an external action, usually triggered ...
	Simple examples of events are mouse button pushes ...
	In an application, not all events will be meaningf...
	Event
	Context
	Left click
	Right click
	Cursor out
	Keyboard
	Window_1
	•
	•
	Window_2
	•
	Button_1
	•
	•
	•
	The • mark signal the entries for which the given ...
	As its execution progresses, the state domain may ...

	2.2.3 Commands
	When an event occurs in a certain context, and the...
	In X toolkits such as Xt, OpenLook and Motif the c...
	Callbacks also exist under Windows, allowing Windo...
	The EiffelVision notion of command is more abstrac...
	Here is a general model for a class describing und...
	deferred class UNDOABLE_COMMAND inherit COMMAND fe...
	undoable: BOOLEAN is True;
	execute is
	-- Execute the action of this command deferred ens...

	undo is
	-- Cancel the action of this command deferred ensu...

	redo is
	-- Re-execute previously undone command require un...

	feature {NONE} undone: BOOLEAN
	-- Has the command been undone? end -- class COMMA...
	The redo command is often, but not always, identic...
	A list of objects of type UNDOABLE_COMMAND is call...
	history_list.item.undo; history_list.back
	Dynamic binding ensures that the proper version of...

	2.2.4 Figures
	The interface of an EiffelVision application may i...
	The EiffelVision model figures is inspired from a ...
	• We may view the reality behind the model (in an ...
	• Then, the world is a set of such figures.
	• The windows are rectangular areas of the world.
	• The map is a representation of a part of the wor...
	• And the device is a physical medium on which the...

	Figure 2 The graphical model
	The four basic concepts — world, figure, window, d...
	The above figure shows the three planes: world (bo...
	Note that two transformations are involved, both o...
	• Move a window with respect to the world (as in w...
	• Change the scale of the window with respect to t...

	2.2.5 Drag and Drop
	2.2.6 Pick and Drop

	2.3 User Characteristics
	Users of EiffelVision are software developers who ...

	3 �� Functional Requirements
	3.1 Widgets
	A widget is a basic component when building the us...
	Creating widgets is simple and consistent. All the...
	make (par: EV_CONTAINER) is
	Procedure ‘make’ has one argument, parent, which i...
	Procedure ‘make’ creates the widget using default ...

	3.2 Primitives
	3.2.1 ev_button
	Class ev_button is one of the most useful user int...
	A button has a 3D appearance as the underlying too...
	The reason why a button is not specified as a cont...

	3.2.2 ev_toggle_button
	ev_toggle_button is a descendant of ev_button and ...
	Toggle buttons are the basis for check buttons and...
	The default state after creation is ‘not pressed’....

	3.2.3 ev_check_button
	Check buttons are similar to toggle buttons, but t...

	3.2.4 ev_radio_button
	Radio buttons are similar to check buttons except ...

	3.2.5 ev_label
	A label ia a static text that can be put anywhere ...

	3.2.6 ev_text_component
	ev_text_component is a deferred class and an ances...

	3.2.7 ev_text_field
	A text field allows the application user to enter ...
	Sometimes it is necessary to check the validity of...
	Offer a class EV_TEXT_FILTER with a redefineable f...

	3.2.8 ev_password_field
	A password field is a text field which can be used...

	3.2.9 ev_spinbutton
	Spinbuttons are single line entries with two small...

	3.2.10 ev_combo_box
	A combo box contains of a text field a button. Whe...

	3.2.11 ev_text_area
	A text area is like a text field, but with a possi...

	3.2.12 ev_text_editor
	A text editor is a complete multi-line text widget...

	3.2.13 ev_separator
	3.2.14 ev_range
	ev_range is a deferred class and a common ancestor...

	3.2.15 ev_SCROLLBAR
	Scrollbars can be used by themselves to specify re...
	EV_SCROLLBAR is a deferred class, it is the ancest...
	The events that can occur on a scrollbar include t...
	Depending on the toolkit, there may be a possibili...

	3.2.16 ev_Scale
	EV_SCALE is a deferred class, ancestor of EV_HORIZ...
	Like a scrollbar, a scale \has a move event and a ...
	The granularity, minimum, maximum, thumb value and...
	The major difference between a scrollbar and the s...
	By default, the maximum of the scale is on the bot...

	3.2.17 ev_list
	A list is a component with a list of options which...

	3.2.18 ev_multi_column_list
	A multi column list has the functionality of list ...

	3.2.19 ev_tree
	A tree is a component which allows data to be repr...

	3.2.20 ev_menu
	A menu is a rectangular area with a vertical list ...

	3.2.21 ev_menu_item
	A menu item is a component that can be put on a me...

	3.2.22 EV_MENU_BAR
	A menu bar is a group of menu-bar items that appea...

	3.2.23 ev_option_menu
	An option menu looks like a button. When it is cli...

	3.2.24 ev_frame
	A frame is simple widget that draws a border aroun...

	3.2.25 ev_progressbar
	A progressbar can be used to show progress in the ...

	3.3 Drawables
	3.3.1 ev_drawable
	A drawable is a common ancestor for component that...

	3.3.2 ev_screen
	A screen is a drawable and refers to the screen ou...

	3.3.3 ev_drawing_area
	Drawing area is a widget that can contain pictures...

	3.3.4 ev_pixmap
	A pixmap is a picture consisting of several pixels...
	Pixmap is itself a drawable, but it can be put ins...

	3.4 Containers
	A container is a widget which allows other widgets...
	Usually container manages its children. It means t...
	3.4.1 ev_window
	A window is a bordered rectangular area visible on...

	3.4.2 ev_dialog
	Dialog is a special window which can be used for p...

	3.4.3 ev_print_dialog
	3.4.4 ev_color_selection_dialog
	3.4.5 ev_font_selection_dialog
	3.4.6 ev_file_selection_dialog
	3.4.7 ev_file_open_dialog
	3.4.8 ev_file_save_dialog
	3.4.9 ev_input_dialog
	3.4.10 ev_message_dialog
	3.4.11 ev_information_dialog
	3.4.12 ev_question_dialog
	3.4.13 ev_warning_dialog
	3.4.14 ev_error_dialog
	3.4.15 ev_fixed
	Fixed is an invisible container that allows unlimi...

	3.4.16 ev_box
	Box, like fixed, is meant to be used to collect ot...
	By default a box is homogeneous, which means that ...
	The default spacing between the children is 0. Tha...

	3.4.17 ev_vertical_box
	A box in vertical position.

	3.4.18 ev_horizontal_box
	A box in horizontal position.

	3.4.19 ev_table
	Tables are another way to pack widgets. Table cont...
	The homogeneous attribute of the table has to do w...
	The rows and columns are laid out from 0 to n, whe...
	Figure 3.4.20 Table layout with two rows and two c...
	The coordinate system starts in the upper left han...

	3.4.21 ev_scrollable_area
	Scrollable area is a container widget with horizon...

	3.4.22 ev_split_area
	Split area is a container widget with two children...

	3.4.23 ev_notebook
	Notebook is a collection of pages that overlap eac...
	Each page is a container that allows one widget to...

	3.5 Events
	EiffelVision has general events, which are common ...
	3.5.1 General Events
	The following list describes the general events.

	3.5.2 Widget Specific Events
	As the name suggests these events are specific for...

	3.6 Commands
	A command is an object created by the library user...
	The above specification and class interface are on...

	3.7 Arguments
	Arguments for commands are currently passed using ...
	Thanks to the tuple mechanism, argument types are ...

	3.8 Event Data
	Event data is information specific to an event, fo...
	3.8.1 ev_button_event_data
	This class represents event data for button events...

	3.8.2 ev_motion_event_data
	3.8.3 ev_key_event_data

	3.9 Figures
	Figures work as in old EiffelVision and the implem...

	3.10 Timers?
	3.11 Other notes
	Colormap handling under X Windows System so that i...

	3.12 Using the Library
	EiffelVision has been designed to be simple to use...
	The following class implements a main window of an...
	The following class presents the main window butto...
	Figure 3.12.1 shows a screenshot of the example.
	Figure 3.12.1 Main windoindexing�
	Figure 3.12.2 description: “EiffelVision horizonta...
	Figure 3.12.3 status: “See notice at end of class”...
	Figure 3.12.4 id: “$Id: ev_horizontal_box.e,v 1.4 ...
	Figure 3.12.5 date: “$Date: 1998/09/29 02:01:19 $”...
	Figure 3.12.6 revision: “$Revision: 1.4 $”�
	Figure 3.12.7 �
	Figure 3.12.8 class interface�
	Figure 3.12.9 EV_HORIZONTAL_BOX�
	Figure 3.12.10 �
	Figure 3.12.11 creation �
	Figure 3.12.12 make�
	Figure 3.12.13 �
	Figure 3.12.14 end -- class EV_HORIZONTAL_BOX�
	Figure 3.12.15 w of the example

