
EiffelVision

Requirements Specification

ISE Technical Document

Modification date: 10/12/98

Copyright ISE, 1998

CONTENTS ii

6

Chapter 1: Introduction 6

1.1 Purpose 6
1.2 Scope 6
1.3 Definitions, Acronyms and Abbreviations
1.4 References 7
1.5 Overview 7

Chapter 2: General Description 8

2.1 Library Perspective 8
2.2 Library Functions 8

2.2.1 Graphical User Interface 8
2.2.2 Events 9
2.2.3 Commands 10
2.2.4 Figures 11
2.2.5 Drag and Drop 13
2.2.6 Pick and Drop 13

2.3 User Characteristics 13

Chapter 3: Functional Requirements 14

3.1 Widgets 14
3.2 Primitives 21

3.2.1 EV_BUTTON 21
3.2.2 EV_TOGGLE_BUTTON 22
3.2.3 EV_CHECK_BUTTON 24
3.2.4 EV_RADIO_BUTTON 24
3.2.5 EV_LABEL 25
3.2.6 EV_TEXT_COMPONENT 26
3.2.7 EV_TEXT_FIELD 28
3.2.8 EV_PASSWORD_FIELD 29
3.2.9 EV_SPINBUTTON 29
3.2.10 EV_COMBO_BOX 29
3.2.11 EV_TEXT_AREA 29
3.2.12 EV_TEXT_EDITOR 30
3.2.13 EV_SEPARATOR 30
3.2.14 EV_RANGE 30
3.2.15 EV_SCROLLBAR 30
3.2.16 EV_SCALE 31
3.2.17 EV_LIST 31
3.2.18 EV_MULTI_COLUMN_LIST 32
3.2.19 EV_TREE 32
3.2.20 EV_MENU 32
3.2.21 EV_MENU_ITEM 32
3.2.22 EV_MENU_BAR 33

CONTENTSiii
3.2.23 EV_OPTION_MENU 34
3.2.24 EV_FRAME 34
3.2.25 EV_PROGRESSBAR 34

3.3 Drawables 34
3.3.1 EV_DRAWABLE 34
3.3.2 EV_SCREEN 34
3.3.3 EV_DRAWING_AREA 35
3.3.4 EV_PIXMAP 35

3.4 Containers 36
3.4.1 EV_WINDOW 37
3.4.2 EV_DIALOG 41
3.4.3 EV_PRINT_DIALOG 41
3.4.4 EV_COLOR_SELECTION_DIALOG 41
3.4.5 EV_FONT_SELECTION_DIALOG 41
3.4.6 EV_FILE_SELECTION_DIALOG 41
3.4.7 EV_FILE_OPEN_DIALOG 41
3.4.8 EV_FILE_SAVE_DIALOG 41
3.4.9 EV_INPUT_DIALOG 41
3.4.10 EV_MESSAGE_DIALOG 41
3.4.11 EV_INFORMATION_DIALOG 41
3.4.12 EV_QUESTION_DIALOG 41
3.4.13 EV_WARNING_DIALOG 41
3.4.14 EV_ERROR_DIALOG 41
3.4.15 EV_FIXED 41
3.4.16 EV_BOX 42
3.4.17 EV_VERTICAL_BOX 43
3.4.18 EV_HORIZONTAL_BOX 43
3.4.19 EV_TABLE 44
3.4.21 EV_SCROLLABLE_AREA 45
3.4.22 EV_SPLIT_AREA 46
3.4.23 EV_NOTEBOOK 47

3.5 Events 48
3.5.1 General Events 48
3.5.2 Widget Specific Events 49

3.6 Commands 49
3.7 Arguments 50
3.8 Event Data 50

3.8.1 EV_BUTTON_EVENT_DATA 51
3.8.2 EV_MOTION_EVENT_DATA 52
3.8.3 EV_KEY_EVENT_DATA 52

3.9 Figures 53
3.10 Timers? 53

CONTENTS iv
3.11 Other notes 53
3.12 Using the Library 53

CONTENTSv

1

Introduction
ary.
 as a

ision.

ms
’

 of
iate.

ge.
 and
essary
 The
reen.

nt
1.1 Purpose

This document is the functional specification of EiffelVision GUI and graphics libr
The document describes all the functional requirements for the library and function
basis and reference when designing and programming the library.

The audience of this document are the developers and maintainers of EiffelV
The EiffelVision programmer’s manual will be written based on this document.

1.2 Scope

This library is a new version of ISE’s EiffelVision. In this document the ter
‘EiffelVision’ and ‘the library’ refers to the new library and the term ‘old EiffelVision
refers to the old library. Although EiffelVision is a rewrite of old EiffelVision, parts
the old EiffelVision are used in the implementation of the library whenever appropr

EiffelVision is a software library for application developers using Eiffel langua
EiffelVision offers an object-oriented framework for both graphical user interface
graphics development.Using the library, developers have an access to all the nec
GUI components to develop a modern, functional and good-looking application.
library also offers tools to draw figures, points, lines, arcs, polygons etc., on the sc

1.3 Definitions, Acronyms and Abbreviations

Eiffel [Meyer 1992]

EiffelVision GUI and graphics library for applications developme
described in this document.

old EiffelVision Old library for the same purpose than the above.

GUI Graphical User Interface.

Introduction §1.47

 li-

lVi-

ents.
rfaces
GTK The GIMP tookit. See section [GTK 1998].

Widget GUI component in EiffelVision.

Developer, Library User The application developer, who is using EiffelVision
brary.

User, Application User The user of the application developed using Eiffe
sion

1.4 References

[Meyer 1992]

Bertrand Meyer;Eiffel: The Language; Prentice Hall Object-Oriented Series, 1991;
second revised printing, 1992.

[GTK 1998]

GTK Web page; http://www.gtk.org/; 1998.

1.5 Overview

Chapter 2 describes the general factors that affect the library and its requirem
Chapter 3 contains the detailed requirements on the fuctions and the external inte
of the library together with design constraints.

2

General Description
soft

 user

 GUI
ented
2.1 Library Perspective

EiffelVision is an abstract, is multi-platform library. Supported platforms are Micro
Windows and Unix/X Window System using GTK toolkit [GTK 1998].

2.2 Library Functions

The main functions of the library are to provide components for building graphical
interface for an application and drawing figures onto a screen.

2.2.1 Graphical User Interface

EiffelVision provides a set of GUI components and methods to associate actions to
events. GUI components in EiffelVision are called widgets. Widget hierachy is pres
in picture 1.

General Description §2.29

ciate

e user

 may

include
hange

ple a
fines
what
in:
Most of the widgets in EiffelVision have events and the user of the library can asso
commands to the events. For example, for aBUTTON widget there is an actionButton_
press. In order to associate an action, for example open a dialog, to this event th
defines his own command class inheriting from a EiffelVision classCOMMAND, creates
an object of that type and uses a featureadd_action from BUTTON.

2.2.2 Events

An event is an external action, usually triggered by the application’s user, which
affect the execution of the application.

Simple examples of events are mouse button pushes and keystrokes. Others
timer activation, mouse movement, auto-repeating keyboard, context resize and c
of window resources.

In an application, not all events will be meaningful for each context. For exam
keystroke is typically ignored if it occurs outside of any window. So part of what de
an application is the two-dimensional grid of what events are meaningful for
contexts. Such a grid is called astate domain. Here is a simple example of state doma

Event

Context

Left click Right click Cursor out Keyboard

Window_1 • •
Window_2 •
Button_1 • • •

Figure 1Class hierarchy for EiffelVision widgets

§2.2 Library Functions 10

iven
or out

typical
events
eral
n may
h the
ft-
aller

current
ted in

ack.
lkit to

call
ke it
ows

k. It
vides
’s

ures, in
es it
bed in
The• mark signal the entries for which the given event is meaningful for the g
context. For example the “Cursor out” event (which occurs if a user moves the curs
of the current context) is meaningful forWindow_1 andButton_1but not forWindow_2.

As its execution progresses, the state domain may change. For example a
application may give you, most of the time, the choice between several possible
(left-clicking, right-clicking, moving the cursor, entering text at the keyboard) in sev
contexts (the windows, panels and buttons of the application), so the state domai
be quite large; but a certain operation may trigger a confirmation panel in whic
application will only recognize two events: left-clicking on the OK button and le
clicking on the CANCEL button. This means the application has entered a new, sm
state domain.

2.2.3 Commands

When an event occurs in a certain context, and the context-event pair is part of the
state domain, the application will execute a certain action. That action is represen
Eiffel by an object — an instance of the EiffelVision classCOMMAND (more precisely,
a direct instance of one of its proper descendants).

In X toolkits such as Xt, OpenLook and Motif the closest notion is that of a callb
A callback is a reference to a certain C function; you can plant a callback in the too
specify that the corresponding function must be called when a certain event occurs.

Callbacks also exist under Windows, allowing Windows components to
application-specific functions provided by an application’s developers. They ma
possible to avoid the massive switch instruction that is traditionally found in Wind
applications.

The EiffelVision notion of command is more abstract than the notion of callbac
conforms to the object-oriented model (every command will be an object) and pro
added power: in addition to theexecute procedure, which describes the command
execution and corresponds to the callback, command objects may have other feat
particular acancel procedure that deletes the effect of the command. This mak
possible to equip an application with an unlimited undo-redo mechanism, as descri
chapter 12 ofObject-Oriented Software Construction.

Here is a general model for a class describing undoable commands:

deferred class
UNDOABLE_COMMAND

inherit

COMMAND

feature
undoable: BOOLEANis True;
executeis

-- Execute the action of this command
deferred
ensure

General Description §2.211

nism.

d
ests

s but

cal
ure 2:

 a set
ds,
done: not undone
end

undois
-- Cancel the action of this command

deferred
ensure

undoing_occured: undone
end

redo is
 -- Re-execute previously undone command

require
undone: undone

deferred
ensure

executed: not undone
end

feature {NONE}

undone: BOOLEAN
-- Has the command been undone?

end -- class COMMAND

The redo command is often, but not always, identical toexecute.

A list of objects of typeUNDOABLE_COMMAND is called ahistory list . Keeping
a history list enables an application to support a multiple-level undo-redo mecha
When a user requests an “undo”, the application can simply execute

history_list.item.undo;
history_list.back

Dynamic binding ensures that the proper version ofundo is applied to each selecte
command (history_list.item) in the list. A similar scheme is used when the user requ
a “redo”.

2.2.4 Figures

The interface of an EiffelVision application may include not just predefined context
also graphical figures.

The EiffelVision model figures is inspired from a familiar notion: geographi
maps. The design of a map uses several levels of abstraction, illustrated on the Fig

• We may view the reality behind the model (in an already abstracted form) as
of geometrical shapes orfigures. For a map the figures represent rivers, roa
towns and other geographical objects.

• Then, theworld is a set of such figures.

• The windows are rectangular areas of the world.

§2.2 Library Functions 12

more
, and
aps

e is
arts of

terest
bjects.
of the

 and
d both
e only
ested
• The map is a representation of a part of the world which can contain one or
windows. For example a map can have one main window devoted to country
subsidiary windows devoted to large cities or outlying parts (as with Hawaii in m
of the USA).

• And thedevice is a physical medium on which the map is displayed. The devic
usually a sheet of paper, but we may also use a computer screen. Various p
the device will be devoted to the various windows.

The four basic concepts —world, figure, window, device — transpose readily to
general graphical applications, where the world may contain arbitrary figures of in
to a certain computer application, rather than just representations of geographical o
Rectangular areas of the world (windows) will be displayed on rectangular areas
device (the computer screen).

The above figure shows the three planes: world (bottom), window (middle)
device (top). The notion of window plays a central role, as each window is associate
with an area of the world and with an area of the device. Windows also cause th
significant extension to the basic map concepts: support for hierarchically n

window1

window2

window3

window4

DEVICE

WINDOW

WORLD

FIGURES

Figure 2The graphical model

General Description §2.313

the

tion
 the

rent
esk).

g the
ce (as

ge in
dge of
basic
GUI
w MS
windows. Our windows will be permitted to have subwindows, with no limit on
nesting level, although no nesting appears on the figure.

Note that two transformations are involved, both of which may include a transla
and a scale factor: from world to window, and from window to device. This gives
necessary flexibility to a model, as you may:

• Move a window with respect to the world (as in when drawing a map of a diffe
part of a country) or with respect to the device (as when moving a map on your d

• Change the scale of the window with respect to the world (as when changin
scale of a map, the map size remaining constant) or with respect to the devi
when deciding to use a smaller or bigger map).

2.2.5 Drag and Drop

2.2.6 Pick and Drop

2.3 User Characteristics

Users of EiffelVision are software developers who should have certain knowled
order to use the library. The library users should have a reasonably good knowle
Eiffel and Object-Oriented software development. They should understand the
conceps of Graphical User Interfaces, but a platform specific knowledge of
programming is not necessary. For example, the library user doesn’t have to kno
Windows programming, because EiffelVision is an abstract library.

3

Functional Requirements
pt for
er to

edure

 (See
 create

ore to

pe of
 more
3.1 Widgets

A widget is a basic component when building the user interface. All widgets, exce
deferred widgets (marked with symbol * in picture 1.) are meant for the library us
create the corresponding GUI components.

Creating widgets is simple and consistent. All the widgets have a creation proc
make:

make (par: EV_CONTAINER) is

Procedure ‘make’ has one argument, parent, which is an EiffelVision container
section 3.4). As all the widget need to have a parent, exept the Windows that can be
with the ‘make_top_level’ creation procedure, you need to create the parent bef
create the widget.

Procedure ‘make’ creates the widget using default setting for the specific ty
widget. Some widgets have additional creation routines which can be used, when
detailed control over the widgets creation is needed.

indexing
description: "Most general notion of widget (i.e. user interface object)"
status: "See notice at end of class"
names: widget
date: "$Date: 1998/10/02 16:58:46 $"
revision: "$Revision: 1.19 $"

deferred class interface
EV_WIDGET

feature -- Access

Functional Requirements §3.115
parent: EV_WIDGET
-- The parent of the Current widget
-- If the widget is an EV_WINDOW without parent,
-- this attribute will beVoid

require
exists:notdestroyed

feature -- Measurement
-- The coordinates are effective only if widget is inside a
-- fixed container. Otherwise they are calculated
-- automatically by the container widget.

height: INTEGER
-- Height of the widget

require
exists:notdestroyed

ensure
positive_height: Result >= 0

minimum_height: INTEGER
-- Minimum height that application wishes widget
-- instance to have

require
exists:notdestroyed

ensure
positive_height: Result >= 0

minimum_width: INTEGER
-- Minimum width that application wishes widget
-- instance to have

require
exists:notdestroyed

ensure
positive_height: Result >= 0

width: INTEGER
-- Width of the widget

require
exists:notdestroyed

ensure
positive_width: Result >= 0

x: INTEGER
-- Horizontal position relative to parent

require
exists:notdestroyed;
unmanaged:notmanaged

y: INTEGER

§3.1 Widgets 16
-- Vertical position relative to parent
require

exists:notdestroyed;
unmanaged:notmanaged

feature -- Comparison

same (other:like Current): BOOLEAN
-- Does Current widget andother correspond
-- to the same screen object?

require
other_exists: other /= void

feature -- Status report

automatic_position: BOOLEAN
-- Does the widget take a new position when
-- the parent resize ?
-- (If it does, its size doesn’t changed).
-- False by default

automatic_resize: BOOLEAN
-- Is the widget resized automatically when
-- the parent resize ? In this case,
-- automatic_position has no effect.
-- True by default

destroyed: BOOLEAN
-- Is Current widget destroyed?
-- (= implementation does not exist)

insensitive: BOOLEAN
-- Is current widget insensitive to
-- user actions?
-- (If it is, events will not be dispatched
-- to Current widget or any of its children)

require
exists:notdestroyed

managed: BOOLEAN
-- Is the geometry of current widget managed by its
-- container? This is the case always unless
-- parent.manager = False (Always true except
-- when the container is EV_FIXED). This is
-- set in the procedure set_default

shown: BOOLEAN
-- Is current widget visible?

require

Functional Requirements §3.117
exists:notdestroyed

feature -- Status setting

destroy
-- Destroy actual screen object of Current
-- widget and of all children.

ensure
destroyed: destroyed

hide
-- Make widget invisible on the screen.

require
exists:notdestroyed

ensure
not_shown:notshown

set_automatic_position (state: BOOLEAN)
-- Makestate the newautomatic_position.

require
exists:notdestroyed

ensure
automatic_position_set: automatic_position = state

set_automatic_resize (state: BOOLEAN)
-- Makestate the newautomatic_resize.

require
exists:notdestroyed

ensure
automatic_resize_set: automatic_resize = state

set_insensitive (flag: BOOLEAN)
-- Set current widget in insensitive mode if
-- flag. This means that any events with an
-- event type of KeyPress, KeyRelease,
-- ButtonPress, ButtonRelease, MotionNotify,
-- EnterNotify, LeaveNotify, FocusIn or
-- FocusOut will not be dispatched to current
-- widget and to all its children. Set it to
-- sensitive mode otherwise.

require
exists:notdestroyed

ensure
flag = insensitive

show
-- Make widget visible on the screen. (default)

require
exists:notdestroyed

§3.1 Widgets 18

_

ensure
shown: shown

feature -- Resizing

set_height (new_height: INTEGER)
-- Makenew_height the newheight.

require
exists:notdestroyed;
positive_height: new_height >= 0

ensure
dimensions_set: implementation.dimensions_set (width, new_height)

set_minimum_height (min_height: INTEGER)
-- Makemin_height the newminimum__height.

require
exists:notdestroyed;
large_enough: min_height >= 0

ensure
min_height = min_height

set_minimum_size (min_width, min_height: INTEGER)
-- Makemin_width the newminimum_width
-- andmin_height the newminimum_height.

require
exists:notdestroyed;
large_enough: min_height >= 0;
large_enough: min_width >= 0

ensure
min_width = min_width;
min_height = min_height

set_minimum_width (min_width: INTEGER)
-- Makemin_width the newminimum_width.

require
exists:notdestroyed;
large_enough: min_width >= 0

ensure
min_width = min_width

set_size (new_width: INTEGER; new_height: INTEGER)
-- Makenew_width the newwidth
-- andnew_height the newheight.

require
exists:notdestroyed;
positive_width: new_width >= 0;
positive_height: new_height >= 0

ensure
dimensions_set: implementation.dimensions_set (new_width, new

Functional Requirements §3.119

OM-

OM-
height)

set_width (new_width: INTEGER)
-- Makenew_width the newwidth.

require
exists:notdestroyed;
positive_width: new_width >= 0

ensure
dimensions_set: implementation.dimensions_set (new_width, height)

set_x (new_x: INTEGER)
-- Put at horizontal positionnew_x relative
-- to parent.

require
exists:notdestroyed;
unmanaged:notmanaged

ensure
x_set: x = new_x

set_x_y (new_x: INTEGER; new_y: INTEGER)
-- Put at horizontal positionnew_x and at
-- vertical positionnew_y relative to parent.

require
exists:notdestroyed;
unmanaged:notmanaged

set_y (new_y: INTEGER)
-- Put at vertical positionnew_y relative
-- to parent.

require
exists:notdestroyed;
unmanaged:notmanaged

ensure
y_set: y = new_y

feature -- Event - command association

add_button_press_command (mouse_button: INTEGER; command: EV_C
MAND; arguments: EV_ARGUMENTS)

-- Add command to the list of commands to be executed when
-- button no ’mouse_button’ is pressed.

require
exists:notdestroyed

add_button_release_command (mouse_button: INTEGER; command: EV_C
MAND; arguments: EV_ARGUMENTS)

-- Add command to the list of commands to be executed when
-- button no ’mouse_button’ is released.

require

§3.1 Widgets 20

V_

ND;

EV_

NTS)

EV_

EV_

EV_
exists:notdestroyed

add_destroy_command (command: EV_COMMAND; arguments: E
ARGUMENTS)

-- Add command to the list of commands to be executed when
-- the widget is destroyed.

require
exists:notdestroyed

add_double_click_command (mouse_button: INTEGER; command: EV_COMMA
arguments: EV_ARGUMENTS)

-- Add command to the list of commands to be executed when
-- button nomouse_button is double clicked.

require
exists:notdestroyed

add_enter_notify_command (command: EV_COMMAND; arguments:
ARGUMENTS)

-- Add command to the list of commands to be executed when
-- the cursor of the mouse enter the widget.

require
exists:notdestroyed

add_expose_command (command: EV_COMMAND; arguments: EV_ARGUME
-- Add command to the list of commands to be executed when
-- the widget has to be redrawn because it was exposed from
-- behind another widget.

require
exists:notdestroyed

add_key_press_command (command: EV_COMMAND; arguments:
ARGUMENTS)

-- Add command to the list of commands to be executed when
-- a key is pressed on the keyboard while the widget has the
-- focus.

require
exists:notdestroyed

add_key_release_command (command: EV_COMMAND; arguments:
ARGUMENTS)

-- Add command to the list of commands to be executed when
-- a key is released on the keyboard while the widget has the
-- focus.

require
exists:notdestroyed

add_leave_notify_command (command: EV_COMMAND; arguments:
ARGUMENTS)

-- Add command to the list of commands to be executed when

Functional Requirements §3.221

EV_

side a
 is pre-
nt, but

so a

n can
re two
-- the cursor of the mouse leave the widget.
require

exists:notdestroyed

add_motion_notify_command (command: EV_COMMAND; arguments:
ARGUMENTS)

-- Add command to the list of commands to be executed when
-- mouse move.

require
exists:notdestroyed

last_command_id: INTEGER
-- Id of the last command added by featureadd_command

require
exists:notdestroyed

remove_command (command_id: INTEGER)
-- Remove the command associated withcommand_id from the
-- list of actions for this context. If there is no command
-- associated withcommand_id, nothing happens.

require
exists:notdestroyed

end -- classEV_WIDGET

3.2 Primitives

A primitive is a widget that has no children. It means that other widgets cannot be put in
primitive. Some primitives can have components inside, but the type of the components
defined. For example, a button can contain a pixmap component and a text compone
nothing else.
deferred class interface

EV_PRIMITIVE

end -- classEV_PRIMITIVE

3.2.1 EV_BUTTON

ClassEV_BUTTON is one of the most useful user interface components. It is al
common ancestor for different button classes.

A button has a 3D appearance as the underlying toolkit implements it. A butto
contain a text label, a pixmap, or both. When both of them are present, there a

§3.2 Primitives 22

ap on

ould
r and
when
ge. In
side a

s for

S)
different ways to present them; pixmap on the top and label on the bottom, or pixm
the left and label on the right.

The reason why a button is not specified as a container is that on Windows it w
be difficult to implement. It would be conceptually nicer to have button as a containe
then but a label inside it when needed a button with a text and pixmap inside it
needed a button with pixmap. More complex situations would also be easy to mana
practice, however, only labels and pixmaps are interesting as components to put in
button.

indexing
description: "EiffelVision button. Basic GUI push button. This is also abase clas

other buttons classes"
status: "See notice at end of class"
id: "$Id: ev_button.e,v 1.9 1998/09/22 01:46:45 samik Exp $"
date: "$Date: 1998/09/22 01:46:45 $"
revision: "$Revision: 1.9 $"

class interface
EV_BUTTON

creation
make,
make_with_text

feature -- Access

pixmap_container: EV_PIXMAP_CONTAINER
-- Pixmap inside button

feature -- Event - command association

add_click_command (command: EV_COMMAND; arguments: EV_ARGUMENT
-- Add ’command’ to the list of commands to be
-- executed when the button is pressed

require
valid_command: command /= void

end -- classEV_BUTTON

3.2.2 EV_TOGGLE_BUTTON

Functional Requirements §3.223

y be
back

any of

ays
clicked
EV_TOGGLE_BUTTON is a descendant ofEV_BUTTON and is very similar, except
that it will always be in one of two states, alternated by a click. A toggle button ma
depressed, and when clicked again, it will pop back up. Click again, and it will pop
down.

Toggle buttons are the basis for check buttons and radio buttons, as such, m
the calls used for toggle buttons are inherited by radio and check buttons.

The default state after creation is ‘not pressed’.

indexing
description: "EiffelVision toggle button. It looks and acts like a button, but is alw

in one of two states,alternated by a click. Toggle button may bedepressed, and when
again, it will pop backup. Click again, and it will pop back down."

status: "See notice at end of class"
id: "$Id: ev_toggle_button.e,v 1.9 1998/09/28 16:12:26 samik Exp $"
date: "$Date: 1998/09/28 16:12:26 $"
revision: "$Revision: 1.9 $"

class interface
EV_TOGGLE_BUTTON

creation
make,
make_with_text

feature -- Status report

pressed: BOOLEAN
-- Is toggle pressed

require
exists:notdestroyed

feature -- Status setting

set_pressed (button_pressed: BOOLEAN)
-- Set Current toggle on and set
-- pressed to True.

require
exists:notdestroyed

ensure
correct_state: pressed = button_pressed

toggle
-- Change the state of the toggel button to
-- opposite

require
exists:notdestroyed

ensure
state_is_true: pressed =notold pressed

§3.2 Primitives 24

TS)

 than
ns on
feature -- Event - command association

add_toggle_command (command: EV_COMMAND; arguments: EV_ARGUMEN
-- Add ’command’ to the list of commands to be
-- executed when the button is toggled

require
valid_command: command /= void

end -- classEV_TOGGLE_BUTTON

3.2.3 EV_CHECK_BUTTON

Check buttons are similar to toggle buttons, but they look a little different. Rather
being buttons with a label and/or a pixmap inside them, they look like check butto
the underlying toolkit. That means usually a small square with a label right of it.

indexing
description: "EiffelVision Check button. Widget that has a check box and a text."
status: "See notice at end of class"
id: "$Id: ev_check_button.e,v 1.4 1998/09/28 16:12:24 samik Exp $"
date: "$Date: 1998/09/28 16:12:24 $"
revision: "$Revision: 1.4 $"

class interface
EV_CHECK_BUTTON

creation
make_with_text

end -- classEV_CHECK_BUTTON

3.2.4 EV_RADIO_BUTTON

Functional Requirements §3.225

d only
long to
 inside
pecial

side a

 select

 ex-

n next
Radio buttons are similar to check buttons except that radio buttons are grouped an
one in a group may be selected at a time. Radio buttons having the same parent be
the same group. Sometimes it can be possible to have several radio button groups
the same parent, for example a window. However, this is not a problem, because s
containers can be used to group radio buttons. For example,EV_FRAME is a good
component to group radio buttons, because it also groups the buttons visually in
border.

Radio buttons are good for places in an application where one option is needed to
from a short list of options.

After the creation, the radio button which was created first in the same group is pressed
and the other radio buttons of the group are not pressed.

indexing
description: "EiffelVision radio button. Radio buttons aresimilar to check buttons

cept that radiobuttons are grouped so that only one may beselected at a time."
status: "See notice at end of class"
id: "$Id: ev_radio_button.e,v 1.3 1998/09/28 16:12:25 samik Exp $"
date: "$Date: 1998/09/28 16:12:25 $"
revision: "$Revision: 1.3 $"

class interface
EV_RADIO_BUTTON

creation
make_with_text

feature -- Initialization

make_with_text (par: EV_CONTAINER; txt: STRING)
-- radio button withpar as parent andtxt as
-- text label

end -- classEV_RADIO_BUTTON

3.2.5 EV_LABEL

A label ia a static text that can be put anywhere in a window, such as an explanatio
to a text field.

indexing
description: "EiffelVision label"
status: "See notice at end of class"
id: "$Id: ev_label.e,v 1.7 1998/09/09 21:50:23 aitkaci Exp $"

§3.2 Primitives 26

ses.
es to

etext
date: "$Date: 1998/09/09 21:50:23 $"
revision: "$Revision: 1.7 $"

class interface
EV_LABEL

creation
make,
make_with_text

end -- classEV_LABEL

3.2.6 EV_TEXT_COMPONENT

EV_TEXT_COMPONENT is a deferred class and an ancestor for several clas
Later, it shouldl give several tools to manage a text. In particular, it will have featur
find a string, cut, copy or past a part of the text.

indexing
description: "EiffelVision text component. Common ancestor for text classes lik

field and text area."
status: "See notice at end of class"
id: "$Id: ev_text_component.e,v 1.3 1998/10/02 17:03:50 aitkaci Exp $"
date: "$Date: 1998/10/02 17:03:50 $"
revision: "$Revision: 1.3 $"

deferred class interface
EV_TEXT_COMPONENT

feature -- Access

text: STRING
-- Text in component

require
exists:notdestroyed

feature -- Status setting

append_text (txt: STRING)
-- Appendtxt into component.

require
exist:notdestroyed;
not_void: txt /= void

prepend_text (txt: STRING)
-- Prependtxt into component.

require
exist:notdestroyed;
not_void: txt /= void

Functional Requirements §3.227
select_region (start_pos, end_pos: INTEGER)
-- Select (hilight) the text between
-- start_pos andend_pos

require
exist:notdestroyed;
valid_start: start_pos > 0and start_pos <= text.count;
valid_end: end_pos > 0and end_pos <= text.count

set_maximum_line_length (length: INTEGER)
-- Makelength the new number of characters on a line.
-- If length < text.cout then the text is truncated

require
exist:notdestroyed

set_position (pos: INTEGER)
-- Set current insertion position.

require
exist:notdestroyed;
valid_pos: pos > 0and pos <= text.count

set_text (txt: STRING)
-- Maketxt the newtext.

require
exist:notdestroyed;
not_void: txt /= void

ensure
text_set: text.is_equal (txt)

feature -- Basic operation

copy_selection
-- Copy theselected_region in the Clipboard
-- to paste it later.
-- If theselected_region is empty, it does
-- nothing.

require
exists:notdestroyed

cut_selection
-- Cut theselected_region by erasing it from
-- the text and putting it in the Clipboard
-- to paste it later.
-- If theselectd_region is empty, it does
-- nothing.

require
exists:notdestroyed

paste (index: INTEGER)
-- Insert the string which is in the

§3.2 Primitives 28

um
ters as
for the

 field.
certain

r

the
-- Clipboard at theindex postion in the
-- text.
-- If the Clipboard is empty, it does nothing.

require
exists:notdestroyed

search (str: STRING): INTEGER
-- Search the stringstr in the text.
-- If str is find, it returns its start
-- index in the text, otherwise, it returns
-- Void

require
exists:notdestroyed;
valid_string: str /= void

end -- classEV_TEXT_COMPONENT

3.2.7 EV_TEXT_FIELD

A text field allows the application user to enter one line of text. A text field has maxim
length and visible length. The text can contain alphanumeric and numeric charac
well as special characters (what? Unicode? iso8851-1?), but there is no formatting
text. All the text in the field uses the same font and color.

Sometimes it is necessary to check the validity of text inserted using the text
For example, a text field can accept only numbers of even better, phone numbers in
format. The following is a suggestion for the validity checking:

Offer a class EV_TEXT_FILTER with a redefineable featurefilter (char:
CHARACTER): BOOLEAN. Filter will return True, if the character is valid. Anothe
creation procedure forEV_TEXT_FIELD has to be added:make_with_filter (filter: EV_
TEXT_FILTER).This is not yet very effective. A better solution would be to create
filter object giving a regular expression to describe the validity of the input

indexing
description: "EiffelVision text field. To query single line of text from the user"
status: "See notice at end of class"
id: "$Id: ev_text_field.e,v 1.2 1998/09/01 00:07:20 samik Exp $"
date: "$Date: 1998/09/01 00:07:20 $"
revision: "$Revision: 1.2 $"

class interface
EV_TEXT_FIELD

creation

Functional Requirements §3.229

V_

in the
racter

field.
n only
 entry

ist of
d from

erty
more
e two
make

feature -- Event - command association

add_activate_command (command: EV_COMMAND; arguments: E
ARGUMENTS)

-- Add ’command’ to the list of commands to be
-- executed when the text field is activated

require
valid_command: command /= void

end -- classEV_TEXT_FIELD

3.2.8 EV_PASSWORD_FIELD

A password field is a text field which can be used when querying a password
application. The text typed into a password entry is not shown, but for every cha
typed an asterisk (*) is shown instead.

3.2.9 EV_SPINBUTTON

Spinbuttons are single line entries with two small button on the right side of the text
The buttons have symbols arrow up and arrow down. The contents of spinbutton ca
be numeric. When pressing the up button and down buttons, the value of the
respectively increased and decreased of the chosen value.

3.2.10 EV_COMBO_BOX

A combo box contains of a text field a button. When the button is pressed, a l
possible choices is opened. Text can either be typed in to the entry field or selecte
the list.

3.2.11 EV_TEXT_AREA

A text area is like a text field, but with a possibility to enter multiple lines. The prop
maximum length controls the number of characters on one line. When typed
characters, the cursor is automatically moved to the next line. A text area will hav
creation routines, one to create a text area with or without scrollbars.

§3.2 Primitives 30

side

eparate
 in other

res are

n the
ive a
ition,
 it of

rs on a

L_
indexing
description: "EiffelVision text area. To query multiple lines of text from the user"
status: "See notice at end of class"
id: "$Id: ev_text_area.e,v 1.1 1998/08/18 01:47:04 samik Exp $"
date: "$Date: 1998/08/18 01:47:04 $"
revision: "$Revision: 1.1 $"

class interface
EV_TEXT_AREA

creation
make

end -- classEV_TEXT_AREA

3.2.12 EV_TEXT_EDITOR

A text editor is a complete multi-line text widget with text editing features. The text in
have several different colors and fonts.

3.2.13 EV_SEPARATOR

Separators are simple widgets that display one or several lines. They are used to s
two areas on the screen. Separators are usually used in menus, but can be used
widgets too.

This single class specifies the direction and style of all separators. The relevant featu
set_double_dashed_line, set_double_line, set_no_line, set_single_dashed_line, and set_
single_line. The direction can be set byset_horizontal and queried byis_horizontal.

3.2.14 EV_RANGE

EV_RANGE is a deferred class and a common ancestor forEV_SCROLLBAR and
EV_SCALE.

3.2.15 EV_SCROLLBAR

A scrollbar is a simple concept. It has a thumb indicating the relative position withi
scrollable material (or position within the scrollbar) and arrows at both end to g
direction indication. Usually the thumb can be dragged to move it to a specific pos
clicking on the arrows moves it of one line unit and clicking near the arrows moves
one page unit. The line and page units can be set by the user.

Scrollbars can be used by themselves to specify relative values such as slide
hi-fi system but are usually attached to something else.

EV_SCROLLBAR is a deferred class, it is the ancestor of EV_HORIZONTA
SCROLLBAR and EV_VERTICAL_SCROLLBAR.

Functional Requirements §3.231

nd the

f the

as
ion

an be
 in the

V_

ere are

 the

of the

ing
le

nd on
y

 may
 is of
The events that can occur on a scrollbar include the movement of the thumb a
position being changed.

Depending on the toolkit, there may be a possibility to have acceleration o
speed of movement of the thumb. This is usually based on aninitial_delay and arepeat_
delay which can be set (set_inital_delay and set_repeat_delay). Also affecting the
movement is thegranularitywhich will affect how much the thumb is to move as well
the maximum andminimum of the range of movement. The routines to set the mot
affecting values areset_granularity, set_maximum andset_minimum. The current position
of the thumb can be set and queried usingset_value andvalue respectively.

3.2.16 EV_SCALE

A scale is like a scrollbar, but is used to set or represent numeric values. It c
considered as a scrollbar with a label indicating a value. The text used for the labels
scale isEV_FONTABLE.

EV_SCALE is a deferred class, ancestor of EV_HORIZONTAL_SCALE and E
VERTICAL_SCALE.

Like a scrollbar, a scale \has a move event and a value changed event. Th
routines to attach and remove commands from these (add_move_action, add_value_
changed_action, remove_move_action andremove_value_changed_action).

The granularity, minimum, maximum, thumb value and orientation all have
same meanings and associated routines asEV_SCROLLBAR.

The major difference between a scrollbar and the scale is the output modes
scale. The scale may be set so that it only does output values (set_output_only) and have
this queried (is_output_only). The label may be made to appear with whatever text us
the set_text feature and queried using thetext feature. The numerical value of the sca
may be shown by settingis_value_shown through theshow_value feature.

By default, the maximum of the scale is on the bottom for the vertical scales a
the right for the horizontal ones. However, this default behavior can be changed bset_
maximum_right_bottom and can be queried withis_maximum_right_bottom.

3.2.17 EV_LIST

A list is a component with a list of options which may be selected by a user. There
be only one selection allowed or multiple selections allowed. The text within the list
typeEV_LIST_ITEM.

§3.2 Primitives 32

 of

 multi
row
umns

 data

f type

s and

 piece

M_
3.2.18 EV_MULTI_COLUMN_LIST

A multi column list has the functionality of list with the difference that the item in it is
type EV_MULTI_COLUMN_LIST_ITEM. A multi column list item consists of
several parts so that each part is the list item represents the item in one column. A
column list also have a title row which is displayed on top of the list. The title
controls which columns are visible and what is the visible size of the columns. Col
can be added, removed and resized.

3.2.19 EV_TREE

A tree is a component which allows data to be represented hierarchically. A single
item in a tree is of typeEV_TREE_ITEM.

3.2.20 EV_MENU

A menu is a rectangular area with a vertical list of menu items. Each menu item is o
EV_MENU_ITEM.

indexing
description: "EiffelVision menu. Menu contains menu items several menu item

shows them when the menu is opened."
status: "See notice at end of class"
id: "$Id: ev_menu.e,v 1.4 1998/09/11 00:53:19 samik Exp $"
date: "$Date: 1998/09/11 00:53:19 $"
revision: "$Revision: 1.4 $"

class interface
EV_MENU

creation
make_with_text

feature -- Implementation

implementation: EV_MENU_I

end -- classEV_MENU

3.2.21 EV_MENU_ITEM

A menu item is a component that can be put on a menu. Menu item is shown as a
of text.

indexing
description: "EiffelVision menu item. Item that must be put in an EV_MENU_ITE

CONTAINER."
status: "See notice at end of class"

Functional Requirements §3.233

enus.
id: "$Id: ev_menu_item.e,v 1.5 1998/09/22 21:40:29 aitkaci Exp $"
date: "$Date: 1998/09/22 21:40:29 $"
revision: "$Revision: 1.5 $"

class interface
EV_MENU_ITEM

creation
make_with_text

feature -- Status report

insensitive: BOOLEAN
-- Is current item insensitive to
-- user actions?

require
exists:notdestroyed

feature -- Status setting

set_insensitive (flag: BOOLEAN)
-- Set current item in insensitive mode if
-- flag.

require
exists:notdestroyed

ensure
flag = insensitive

feature -- Implementation

implementation: EV_MENU_ITEM_I

end -- classEV_MENU_ITEM

3.2.22 EV_MENU_BAR

A menu bar is a group of menu-bar items that appears on the top of a window. M
combo-box, text fields are menu-bar items.

§3.3 Drawables 34

dow

. The
 option
-only

ow the

ictures

y using
 the
indexing
description: "EiffelVision menu bar. Menu bar is a vertical the screen or in the win

containing menu items."
status: "See notice at end of class"
id: "$Id: ev_menu_bar.e,v 1.3 1998/09/29 02:01:21 aitkaci Exp $"
date: "$Date: 1998/09/29 02:01:21 $"
revision: "$Revision: 1.3 $"

class interface
EV_MENU_BAR

creation
make

end -- classEV_MENU_BAR

3.2.23 EV_OPTION_MENU

An option menu looks like a button. When it is clicked a menu of choices is opened
user can select a choice in the menu. The selected item is shown as a label of the
menu button. On Windows there is no native option menu component, but a read
combo box can be used instead.

3.2.24 EV_FRAME

A frame is simple widget that draws a border around its children.

3.2.25 EV_PROGRESSBAR

A progressbar can be used to show progress in the application, for example, to sh
progress in compilation.

3.3 Drawables

3.3.1 EV_DRAWABLE

A drawable is a common ancestor for component that can contain pictures. These p
can be pixmaps or drawn using figures (see section 3.9).

3.3.2 EV_SCREEN

A screen is a drawable and refers to the screen outside the applications windows. B
the classEV_SCREEN the application can draw figures and pixmaps anywhere on
screen without even having to open any windows.

Functional Requirements §3.335

ap =
ould
d used

e."
3.3.3 EV_DRAWING_AREA

Drawing area is a widget that can contain pictures.

3.3.4 EV_PIXMAP

A pixmap is a picture consisting of several pixels of possibly different colors (pixm
pixel map). The current implementation of pixmap is a pixmap widget, but pixmap sh
exist as a separate structure. The pixmap widget should be removed completely an
drawable with a pixmap component instead.

Pixmap is itself a drawable, but it can be put inside of any drawable.

indexing
description: "EiffelVision pixmap. Pixmap is a data structure that contains a pictur
status: "See notice at end of class"
id: "$Id: ev_pixmap.e,v 1.3 1998/09/17 22:59:47 samik Exp $"
date: "$Date: 1998/09/17 22:59:47 $"
revision: "$Revision: 1.3 $"

class interface
EV_PIXMAP

creation
make,
make_from_file

§3.4 Containers 36

side
o be a
ussion

 child
er the
ot the

ainer

 in-
feature -- Element change

read_from_file (file_name: STRING)
-- Load the pixmap described in ’file_name’.
-- If the file does not exist, an exception is
-- raised.
-- What about a file in wrong format?

require
file_name_exists: file_name /= void

end -- classEV_PIXMAP

3.4 Containers

A container is a widget which allows other widgets, called its ‘children’, to be put in
it. Some of the containers allow only one child. However, because the child can als
container, it is possible to put several widgets inside any container. See the disc
about containers fixed, box, etc...

Usually container manages its children. It means that the size and position of a
are specified by the container. The child can only specify its size and location und
restrictions of the container. For example, child can set the minimum size, but n
actual size. Also the attributesautomatic_position and automatic_resize of EV_
WIDGET control the appearance of the child inside a container. The only cont
which does not manage its child is fixed container.

indexing
description: "EiffelVision container. Container is a widget that can hold children

side it"
status: "See notice at end of class"
id: "$Id: ev_container.e,v 1.6 1998/09/29 02:01:18 aitkaci Exp $"
date: "$Date: 1998/09/29 02:01:18 $"
revision: "$Revision: 1.6 $"

deferred class interface
EV_CONTAINER

feature -- Access

client_height: INTEGER
-- Height of the client area (area of the
-- widget excluding the borders etc) of
-- container

require
exists:notdestroyed

ensure
positive_result: Result >= 0

client_width: INTEGER
-- Width of the client area (area of the

Functional Requirements §3.437

 GUI
d any
ubar,
most
elow
-- widget excluding the borders etc) of
-- container

require
exists:notdestroyed

ensure
positive_result: Result >= 0

manager: BOOLEAN
-- Manager container manages the geometry of its
-- child(ren). Default True.

end -- classEV_CONTAINER

3.4.1 EV_WINDOW

A window is a bordered rectangular area visible on the screen. A window is a basic
component and a basis for almost every application. A window is a container an
widget, except for a window, can be put inside it. A window also has properties men
toolbar and statusbar. All of them can be visible on non visible. A menubar is the top
component in the window, just below the window borders. A toolbar is located just b
the menubar. A statusbar is the component on the bottom of the window.Should we
allow floating menu- or toolbars?. The class interface is presented below.

indexing
description: "EiffelVision window. Window is a visible window on the screen."
status: "See notice at end of class"
id: "$Id: ev_window.e,v 1.12 1998/10/02 17:02:04 aitkaci Exp $"
date: "$Date: 1998/10/02 17:02:04 $"
revision: "$Revision: 1.12 $"

§3.4 Containers 38
class interface
EV_WINDOW

creation
make,
make_top_level

feature -- Access

icon_mask: EV_PIXMAP
-- Bitmap that could be used by window manager
-- to clip icon_pixmap bitmap to make the
-- icon nonrectangular

require
exists:notdestroyed

icon_name: STRING
-- Short form of application name to be
-- displayed by the window manager when
-- application is iconified

require
exists:notdestroyed

icon_pixmap: EV_PIXMAP
-- Bitmap that could be used by the window manager
-- as the application’s icon

require
exists:notdestroyed

ensure
valid_result: Result /= void

parent: EV_WINDOW
-- The parent of the Current window: a window.
-- If the window is a top level, this attribute
-- is Void.
-- (from EV_WIDGET)

title: STRING
-- Application name to be displayed by
-- the window manager

require
exists:notdestroyed

widget_group: EV_WIDGET
-- Widget with wich current widget is associated.
-- By convention this widget is the "leader" of a group
-- widgets. Window manager will treat all widgets in
-- a group in some way; for example, it may move or

Functional Requirements §3.439
-- iconify them together
require

exists:notdestroyed

feature -- Measurement

maximum_height: INTEGER
-- Maximum height that application wishes widget
-- instance to have

require
exists:notdestroyed

ensure
Result >= 0

maximum_width: INTEGER
-- Maximum width that application wishes widget
-- instance to have

require
exists:notdestroyed

ensure
Result >= 0

feature -- Status report

is_iconic_state: BOOLEAN
-- Does application start in iconic state?

require
exists:notdestroyed

feature -- Status setting

set_iconic_state
-- Set start state of the application
-- to be iconic.

require
exists:notdestroyed

set_maximize_state
-- Set start state of the application to be
-- maximized.

require
exists:notdestroyed

set_normal_state
-- Set start state of the application to be normal.

require
exists:notdestroyed

feature -- Element change

§3.4 Containers 40
set_close_command (c: EV_COMMAND)

set_icon_mask (mask: EV_PIXMAP)
-- Seticon_mask to mask.

require
exists:notdestroyed;
not_mask_void: mask /= void

set_icon_name (new_name: STRING)
-- Seticon_name to new_name.

require
exists:notdestroyed;
valid_name: new_name /= void

set_icon_pixmap (pixmap: EV_PIXMAP)
-- Seticon_pixmap to pixmap.

require
exists:notdestroyed;
not_pixmap_void: pixmap /= void

set_title (new_title: STRING)
-- Settitle to new_title.

require
exists:notdestroyed;
not_title_void: new_title /= void

set_widget_group (group_widget: EV_WIDGET)
-- Setwidget_group to group_widget.

require
exists:notdestroyed

feature -- Resizing

set_maximum_height (max_height: INTEGER)
-- Makemax_height the newmaximum_height.

require
exists:notdestroyed;
large_enough: max_height >= 0

ensure
max_height = max_height

set_maximum_width (max_width: INTEGER)
-- Makemax_width the newmaximum_width.

require
exists:notdestroyed;
large_enough: max_width >= 0

ensure
max_width = max_width

Functional Requirements §3.441

d other

 put
lative

 of
oordi-
end -- classEV_WINDOW

3.4.2 EV_DIALOG

Dialog is a special window which can be used for pop-up messages to the user, an
similar tasks.

3.4.3 EV_PRINT_DIALOG

3.4.4 EV_COLOR_SELECTION_DIALOG

3.4.5 EV_FONT_SELECTION_DIALOG

3.4.6 EV_FILE_SELECTION_DIALOG

3.4.7 EV_FILE_OPEN_DIALOG

3.4.8 EV_FILE_SAVE_DIALOG

3.4.9 EV_INPUT_DIALOG

3.4.10 EV_MESSAGE_DIALOG

3.4.11 EV_INFORMATION_DIALOG

3.4.12 EV_QUESTION_DIALOG

3.4.13 EV_WARNING_DIALOG

3.4.14 EV_ERROR_DIALOG

3.4.15 EV_FIXED

Fixed is an invisible container that allows unlimited number of other widgets to be
inside it. The location of widgets inside a fixed widget is specified by coordinates re
to the top left corner of fixed. The coordinates are widget attributesx andy. Fixed is the
only container that allow the children specify their location and size freely.

indexing
description: "EiffelVision fixed. Invisible container that allows unlimited number

other widgets to be put inside it. The location of each widget inside is specified by the c
nates of the widget."

status: "See notice at end of class"
id: "$Id: ev_fixed.e,v 1.5 1998/09/29 02:01:18 aitkaci Exp $"
date: "$Date: 1998/09/29 02:01:18 $"

§3.4 Containers 42

rance.
n of
sed to
nts

ildren
d to fill

ture
as

eature

th-
 size
revision: "$Revision: 1.5 $"

class interface
EV_FIXED

creation
make

feature -- Access

manager: BOOLEAN

end -- classEV_FIXED

3.4.16 EV_BOX

Box, like fixed, is meant to be used to collect other widgets and control their appea
Using box, widgets can be packed horizontally or vertically. Box controls the positio
the widgets inside it and it can do automatic resizing. Widget inside a box can be u
right justified or left justified.EV_BOX is a deferred class, with effective descenda
horizontal box and vertical box.

By default a box is homogeneous, which means that the space for all the ch
are is be the same size than the space for the largest child. Children can be resize
the space of to be in the center of the space (controlled by widget’s attributesautomatic_
resize andautomatic_position). Box can be set to non homogeneous by using the fea
set_homegeneous with a parameterFalse. If the box is non homogeneous, each child h
a space relative to the size of the child itself.

The default spacing between the children is 0. That can be changed by the f
set_spacing.

indexing
description: "EiffelVision box. Invisible container that allows unlimited number of o

er widgets to be packed inside it. Box controls the location the children%’s location and
automatically."

status: "See notice at end of class"
id: "$Id: ev_box.e,v 1.8 1998/09/29 02:01:17 aitkaci Exp $"
date: "$Date: 1998/09/29 02:01:17 $"
revision: "$Revision: 1.8 $"

deferred class interface
EV_BOX

feature -- Element change (box specific)

set_homogeneous (homogeneous: BOOLEAN)
-- Homogenous controls whether each object in
-- the box has the same size. If homogenous =
-- True, expand argument for each child is

Functional Requirements §3.443
-- automatically True
require

exist:notdestroyed

set_spacing (spacing: INTEGER)
-- Spacing between the objects in the box

require
exist:notdestroyed

end -- classEV_BOX

3.4.17 EV_VERTICAL_BOX

A box in vertical position.

indexing
description: "EiffelVision vertical box."
status: "See notice at end of class"
id: "$Id: ev_vertical_box.e,v 1.4 1998/09/29 02:01:22 aitkaci Exp $"
date: "$Date: 1998/09/29 02:01:22 $"
revision: "$Revision: 1.4 $"

class interface
EV_VERTICAL_BOX

creation
make

end -- classEV_VERTICAL_BOX

3.4.18 EV_HORIZONTAL_BOX

A box in horizontal position.

§3.4 Containers 44

 where
ble as

s are
dget
est

umn.
indexing
description: "EiffelVision horizontal box."
status: "See notice at end of class"
id: "$Id: ev_horizontal_box.e,v 1.4 1998/09/29 02:01:19 aitkaci Exp $"
date: "$Date: 1998/09/29 02:01:19 $"
revision: "$Revision: 1.4 $"

class interface
EV_HORIZONTAL_BOX

creation
make

end -- classEV_HORIZONTAL_BOX

3.4.19 EV_TABLE

Tables are another way to pack widgets. Table contains a grid of rows and columns
the widgets are placed in. The widgets may take up as many spaces in the ta
specified.

The homogeneous attribute of the table has to do with how the table’s boxe
sized. If homogeneous isTrue, the table boxes are resized to the size of the largest wi
in the table. If homogeneous isFalse, the size of a table boxes is dictated by the tall
widget in its same row, and the widest widget in its column.

The rows and columns are laid out from 0 to n, where n is the last row or col
A table layout with two rows and two columns is presented in Figure 3.4.20.

Figure 3.4.20Table layout with two rows and two columns

The coordinate system starts in the upper left hand corner.

0 1 2

2

1

0

Functional Requirements §3.445

. Any
 offers
area,
of the
a) and

ll-
3.4.21 EV_SCROLLABLE_AREA

Scrollable area is a container widget with horizontal and vertical scrollbars around it
widget, except for a window, can be put inside a scrollable area the scrollable area
automatic scrolling. If the widget inside is bigger than the visible size of scrollable
the scrollbars can be used to move the view of the widget. Size of the thumbs
scrollbar corresponds to the visible size of the widget (the size of the scrollable are
the size of the whole scrollbar corresponds to the size of the whole widget.

indexing
description: "EiffelVision scrollable area. Scrollable area is a container with scro

bars. Scrollable area offers automatic scrolling for its child."
status: "See notice at end of class"
id: "$Id: ev_scrollable_area.e,v 1.2 1998/09/11 19:53:11 samik Exp $"
date: "$Date: 1998/09/11 19:53:11 $"
revision: "$Revision: 1.2 $"

class interface
EV_SCROLLABLE_AREA

creation
make

end -- classEV_SCROLLABLE_AREA

§3.4 Containers 46

. The
an be

ve,
bstract
3.4.22 EV_SPLIT_AREA

Split area is a container widget with two children with groove drawn between them
user can control the relative size of the two parts by moving the groove. Split area c
either horizontal of vertical.

indexing
description: "EiffelVision split area. Split consists of two parts divided by a groo

which can be moved by the user to change the visible portion of the parts. Split is an a
class with effective decendants horizontal and vertical split."

status: "See notice at end of class"
id: "$Id: ev_split_area.e,v 1.3 1998/09/29 02:01:22 aitkaci Exp $"
date: "$Date: 1998/09/29 02:01:22 $"
revision: "$Revision: 1.3 $"

deferred class interface
EV_SPLIT_AREA

end -- classEV_SPLIT_AREA

Functional Requirements §3.447

s a tab
 either
ge is

 same
 scroll

an be

rlap
3.4.23 EV_NOTEBOOK

Notebook is a collection of pages that overlap each other. For each page there i
corresponding to the page. Only one of the pages is visible, but the tabs are visible
top, bottom, left or right of the page. When the tab is clicked, the corresponding pa
made visible. If there is a lot of tabs, it is usually not possible to show them all at the
time. The number of visible tabs can be set. If there is more tabs than visible tabs,
buttons are shown and they can be used to control which of the tabs are visible.

Each page is a container that allows one widget to be put inside it. Pages c
added to and removed from the notebook.

indexing
description: "EiffelVision notebook. Notebook is a collection of pages that ove

each other. For each page there is a tab corresponding to the page."
status: "See notice at end of class"
id: "$Id: ev_notebook.e,v 1.3 1998/08/08 21:08:20 samik Exp $"
date: "$Date: 1998/08/08 21:08:20 $"
revision: "$Revision: 1.3 $"

class interface
EV_NOTEBOOK

creation
make

§3.5 Events 48

idget

was
feature -- Status setting

set_tab_left
-- set position of tabs to left

require
exists:notdestroyed

feature -- Element change

append_page (c: EV_WIDGET; label: STRING)
-- New page for notebook containing child ’c’ with tab
-- label ’label

require
exists:notdestroyed;
child_of_notebook: c.parent = Current

end -- classEV_NOTEBOOK

3.5 Events

EiffelVision has general events, which are common for all the widgets, and w
specific events.

3.5.1 General Events

The following list describes the general events.

button press A mouse button is pressed over the widget.

button release A mouse button is released over the widget.

double click a mouse button is double clicked over the widget.

motion notify Mouse pointer is moved over the widget.

delete The widget is deleted.

expose A part of the widget has to be redrawn because it
exposed from behind another widget.

key press A key is pressed over the widget.

key release A key is released over the widget.

enter notify Mouse pointer is enters the area of widget.

leave notify Mouse pointer leaves the area of widget.

more??

Functional Requirements §3.649

tton has
vents

ponse

ture

om-
3.5.2 Widget Specific Events

As the name suggests these events are specific for each widget. For example, bu
a click event which happens when a button widget is clicked. For information on e
specific to a widget, see the definition of widget in section 3.1.

3.6 Commands

A command is an object created by the library user to perform some action in res
to an event. EiffelVision offers a deferred classEV_COMMAND. The library user can
inherit from EV_COMMAND, to define a new command class and redefine fea
execute. The routineexecute is executed in response to an event.

indexing
description: "General notion of command (semantic unity). To write an actual c

mand inherit from this class and implement the ‘execute%’ feature"
status: "See notice at end of class"
date: "$Date: 1998/08/28 01:16:17 $"
revision: "$Revision: 1.2 $"

deferred class interface
EV_COMMAND

feature -- Access

event_data: EV_EVENT_DATA
-- Information related to Current command,
-- provided by the underlying user interface
-- mechanism

feature -- Status report
--XX check the purpose of this this

event_data_useful: BOOLEAN
-- Should the context data be available
-- when Current command is invoked as a
-- callback

is_template: BOOLEAN
-- Is the current command a template, in other words,
-- should it be cloned before execution?
-- If true, EiffelVision will clone Current command
-- whenever it is invoked as a callback

feature -- Basic operations

execute (arguments: EV_ARGUMENTS)
-- Execute Current command.
-- arguments is automatically passed by

§3.7 Arguments 50

final
ibrary

e to
 user
would
e other

ples

so that

ouse

all-
-- EiffelVision when Current command is
-- invoked as a callback.

execute_address: POINTER
-- Address of feature execute

end -- classEV_COMMAND

The above specification and class interface are only temporary. The
implementation will use routine objects when they are available. It means that the l
user doesn’t have to create a new class for each command by inheriting fromEV_
COMMAND.Instead there are two choices for EiffelVision: one approach would b
have a class EV_COMMAND with a creation routine taking a routine object and the
argument (a tuple) as arguments. Then the execution function of this command
execute the routine abject with the argument and the event_data as parameters. Th
choice is just to put the routine object as an argument foradd_command features.

3.7 Arguments

Arguments for commands are currently passed using an object of classEV_
ARGUMENTS and its descendants. However, the final implementation will use tu
instead, when available.

Thanks to the tuple mechanism, argument types are checked at compile time,
the argument passing mechanism is type-safe.

3.8 Event Data

Event data is information specific to an event, for example, the location of the m
pointer. Widget specific events do not have any event data.

indexing
description: "EiffelVision event data. Information given byEiffelVision when a c

back is triggered.This is the base class for representing event data"
status: "See notice at end of class"
id: "$Id: ev_event_data.e,v 1.7 1998/09/29 02:01:16 aitkaci Exp $"
date: "$Date: 1998/09/29 02:01:16 $"
revision: "$Revision: 1.7 $"

class interface
EV_EVENT_DATA

creation
make

feature -- Access

Functional Requirements §3.851

 double

ata"
widget: EV_WIDGET
-- The mouse pointer was over this widget
-- when event happened

feature -- Debug

print_contents

end -- classEV_EVENT_DATA

3.8.1 EV_BUTTON_EVENT_DATA

This class represents event data for button events: button press, button release and
click.

indexing
description: "EiffelVision button event data.Class for representing button event d
status: "See notice at end of class"
id: "$Id: ev_button_event_data.e,v 1.6 1998/08/28 00:44:12 samik Exp $"
date: "$Date: 1998/08/28 00:44:12 $"
revision: "$Revision: 1.6 $"

class interface
EV_BUTTON_EVENT_DATA

creation
make

feature -- Access

button: INTEGER

keyval: INTEGER

state: INTEGER

x: DOUBLE
-- x coordinate of mouse pointer

y: DOUBLE
-- y coordinate of mouse pointer

feature -- Debug

print_contents
-- print the contents of the object

end -- classEV_BUTTON_EVENT_DATA

§3.8 Event Data 52

vent

"

3.8.2 EV_MOTION_EVENT_DATA

indexing
description: "EiffelVision motion event data.Class for representing motion e

data"
status: "See notice at end of class"
id: "$Id: ev_motion_event_data.e,v 1.5 1998/09/03 23:32:20 samik Exp $"
date: "$Date: 1998/09/03 23:32:20 $"
revision: "$Revision: 1.5 $"

class interface
EV_MOTION_EVENT_DATA

creation
make

feature -- Initialization

make

feature -- Access

state: INTEGER

x: DOUBLE
-- x coordinate of mouse pointer

y: DOUBLE
-- y coordinate of mouse pointer

feature -- Debug

print_contents
-- print the contents of the object

end -- classEV_MOTION_EVENT_DATA

3.8.3 EV_KEY_EVENT_DATA

indexing
description: "EiffelVision key event data.Class for representing button event data
status: "See notice at end of class"
id: "$Id: ev_key_event_data.e,v 1.1 1998/08/28 00:44:15 samik Exp $"
date: "$Date: 1998/08/28 00:44:15 $"
revision: "$Revision: 1.1 $"

class interface
EV_KEY_EVENT_DATA

Functional Requirements §3.953

e as

or.

gives

he
ach

to
creation
make

feature -- Access

keyval: INTEGER

length: INTEGER

state: INTEGER

string: STRING

feature -- Debug

print_contents
-- print the contents of the object

end -- classEV_KEY_EVENT_DATA

3.9 Figures

Figures work as in old EiffelVision and the implementation will be taken from ther
far as possible.

3.10 Timers?

3.11 Other notes

Colormap handling under X Windows System so that it always gets the closest col

3.12 Using the Library

EiffelVision has been designed to be simple to use and still effective. This section
examples of using the library.

The following class implements a main window of an EiffelVision example. T
main window consist of button box with toggle buttons containing label and text. E
button is associated to a command, which opens a demo window.

indexing
description: "MAIND_WINDOW, main window for the application. Belongs

EiffelVision example.";
status: "See notice at end of class";
id: "$Id: main_window.e,v 1.18 1998/09/23 00:11:28 samik Exp $";
date: "$Date: 1998/09/23 00:11:28 $";
revision: "$Revision: 1.18 $"

§3.12 Using the Library 54

0);
class MAIN_WINDOW

inherit
EV_WINDOW

redefine
make_top_level

end;
EV_COMMAND

creation
make_top_level

feature --Access

container: EV_VERTICAL_BOX;
-- Push buttons

current_demo_window: DEMO_WINDOW;

feature -- Initialization

make_top_levelis
local

b: MAIN_WINDOW_BUTTON;
c1: LABEL_DEMO_WINDOW;
c2: FIXED_DEMO_WINDOW;
c3: BOX_DEMO_WINDOW;
c4: NOTEBOOK_DEMO_WINDOW;
c5: TEXT_FIELD_DEMO_WINDOW;
c6: TEXT_AREA_DEMO_WINDOW;
c7: MENU_DEMO_WINDOW;
c8: SPLIT_AREA_DEMO_WINDOW;
c9: SCROLLABLE_AREA_DEMO_WINDOW;
c10: BUTTONS_DEMO_WINDOW

do
precursor;
!! container.make (Current);
!! c1.make (Current);
!! c2.make (Current);
!! c3.make (Current);
!! c4.make (Current);
!! c5.make (Current);
!! c6.make (Current);
!! c7.make (Current);
!! c8.make (Current);
!! c9.make (Current);
!! c10.make (Current);
!! b.make_button (Current, "Label", "", c1);
!! b.make_button (Current, "Buttons", "../pixmaps/buttons.xpm", c1

Functional Requirements §3.1255

m",

",

",

",

e_

ple of
erface
gets.
pler
ument

ion
!! b.make_button (Current, "Fixed", "../pixmaps/fixed.xpm", c2);
!! b.make_button (Current, "Box", "../pixmaps/box.xpm", c3);
!! b.make_button (Current, "Notebook", "../pixmaps/notebook.xp

c4);
!! b.make_button (Current, "Text field", "../pixmaps/text_field.xpm

c5);
!! b.make_button (Current, "Text area", "../pixmaps/text_area.xpm

c6);
!! b.make_button (Current, "Menu", "../pixmaps/menu.xpm", c7);
!! b.make_button (Current, "Split area", "../pixmaps/split_area.xpm

c8);
!! b.make_button (Current, "Scrollable area", "../pixmaps/scrollabl

area.xpm", c9);
set_values

end;

feature -- Status setting

execute (arg: EV_ARGUMENT1 [DEMO_WINDOW])is
-- called when actions window is deleted

do
arg.first.effective_button.set_pressed (false)
arg.first.actions_window.destroy
set_insensitive (false)

end;

feature -- Status setting

set_valuesis
do

set_title ("Test all widgets")
end;

end -- classMAIN_WINDOW

The following class presents the main window button used in the code exam
main window. Together these example show how to create a complete user int
easily. The interface is built without specifying any coordinates nor sizes for the wid
Everything is calculated automatically at run time. The example will be even sim
when tuples and routine objects are available and used in command and arg
implementation.

indexing
description: "main window button for the application. Belongs to EiffelVis

example.";
status: "See notice at end of class";
id: "$Id: main_window_button.e,v 1.5 1998/09/22 22:32:34 samik Exp $";
date: "$Date: 1998/09/22 22:32:34 $";
revision: "$Revision: 1.5 $"

§3.12 Using the Library 56
class MAIN_WINDOW_BUTTON

creation
make_button

feature {NONE} -- Initialization

initialize (par: EV_CONTAINER)is
-- Common initialization for buttons
-- (from EV_BUTTON)

do
widget_make (par)
!! pixmap_container.make_from_primitive (Current)

end;

make (par: EV_CONTAINER)is
-- Empty button
-- (from EV_TOGGLE_BUTTON)

do
!EV_TOGGLE_BUTTON_IMP! implementation.make (par)
initialize (par)

end;

make_with_text (par: EV_CONTAINER; txt: STRING)is
-- Button with ’par’ as parent and ’txt’ as
-- text label
-- (from EV_TOGGLE_BUTTON)

do
!EV_TOGGLE_BUTTON_IMP! implementation.make_with_text (par,

txt)
initialize (par)

end;

widget_make (par: EV_CONTAINER)is
-- Create a widget withpar as parent and
-- call set_default.
-- This is a general initialization for
-- widgets and has to be called by all the
-- widgets with parents.
-- (from EV_WIDGET)

require -- from EV_WIDGET
valid_parent: par /= void

do
parent := par
set_default

ensure -- from EV_WIDGET
parent_set: parent.child = Currentand par = parent;
exists:notdestroyed

end;

Functional Requirements §3.1257

ING;
feature {NONE} --Initialization

make_button (main_w: MAIN_WINDOW; button_name, pixmap_file_name: STR
cmd: DEMO_WINDOW)is

local
p: EV_PIXMAP;
a: EV_ARGUMENT2 [MAIN_WINDOW, EV_TOGGLE_BUTTON]

do
make (main_w.container);
set_text (button_name);
if pixmap_file_name /= voidand then notpixmap_file_name.empty

then
!! p.make_from_file (pixmap_container, pixmap_file_name)

end;
!! a.make_2 (main_w, Current);
add_toggle_command (cmd, a)

end;

feature -- Access

font: EV_FONTis
-- Font name of label
-- (from EV_FONTABLE)

require -- from EV_FONTABLE
exists:notdestroyed

do
Result := implementation.font

end;

parent: EV_CONTAINER;
-- Parent container of this widget
-- (from EV_WIDGET)

pixmap_container: EV_PIXMAP_CONTAINER;
-- Pixmap inside button
-- (from EV_BUTTON)

text: STRINGis
-- Text of current label
-- (from EV_TEXT_CONTAINER)

require -- from EV_TEXT_CONTAINER
exists:notdestroyed

do
Result := implementation.text

end;

feature -- Measurement
-- The coordinates are effective only if widget is inside a

§3.12 Using the Library 58
-- fixed container. Otherwise they are calculated
-- automatically by the container widget.

height: INTEGERis
-- Height of widget
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementation.height

ensure -- from EV_WIDGET
positive_height: Result >= 0

end;

maximum_height: INTEGERis
-- Maximum height that application wishes widget
-- instance to have
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementation.maximum_height

ensure -- from EV_WIDGET
Result >= 0

end;

maximum_width: INTEGERis
-- Maximum width that application wishes widget
-- instance to have
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementation.maximum_width

ensure -- from EV_WIDGET
Result >= 0

end;

minimum_height: INTEGERis
-- Minimum height that application wishes widget
-- instance to have
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementation.minimum_height

ensure -- from EV_WIDGET
positive_height: Result >= 0

end;

Functional Requirements §3.1259
minimum_width: INTEGERis
-- Minimum width that application wishes widget
-- instance to have
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementation.minimum_width

ensure -- from EV_WIDGET
positive_height: Result >= 0

end;

width: INTEGERis
-- Width of widget
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementation.width

ensure -- from EV_WIDGET
positive_width: Result >= 0

end;

x: INTEGERis
-- Horizontal position relative to parent
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed;
unmanaged:notmanaged

do
Result := implementation.x

end;

y: INTEGERis
-- Vertical position relative to parent
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed;
unmanaged:notmanaged

do
Result := implementation.y

end;

feature -- Comparison

same (other:like Current): BOOLEANis
-- Does Current widget andother correspond
-- to the same screen object?

§3.12 Using the Library 60
-- (from EV_WIDGET)
require -- from EV_WIDGET

other_exists: other /= void
do

Result := other.implementation = implementation
end;

feature -- Status report

automatic_position: BOOLEAN;
-- Does the widget take a new position when
-- the parent resize ? (If it does, its size
-- doesn’t changed). False by default
-- (from EV_WIDGET)

automatic_resize: BOOLEAN;
-- Is the widget resized automatically when
-- the parent resize ? In this case,
-- automatic_position has no effect. True by
-- default
-- (from EV_WIDGET)

destroyed: BOOLEANis
-- Is Current widget destroyed?
-- (= implementation does not exist)
-- (from EV_WIDGET)

do
Result := (implementation = void)

end;

insensitive: BOOLEANis
-- Is current widget insensitive to
-- user actions? (If it is, events will
-- not be dispatched to Current widget or
-- any of its children)
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementation.insensitive

end;

managed: BOOLEAN;
-- Is the geometry of current widget managed by its
-- container? This is the case always unless
-- parent.manager = False (Always true except
-- when the container is EV_FIXED). This is
-- set in the procedure set_default
-- (from EV_WIDGET)

Functional Requirements §3.1261
pressed: BOOLEANis
-- Is toggle pressed
-- (from EV_TOGGLE_BUTTON)

require -- from EV_TOGGLE_BUTTON
exists:notdestroyed

do
Result := implementation.pressed

end;

shown: BOOLEANis
-- Is current widget visible?
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementation.shown

end;

feature -- Status setting

destroyis
-- Destroy actual screen object of Current
-- widget and of all children.
-- (from EV_WIDGET)

do
if notdestroyedthen

implementation.destroy;
remove_implementation

end
ensure -- from EV_WIDGET

destroyed: destroyed
end;

hide is
-- Make widget and all children (recursively)
-- invisible on the screen.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
implementation.hide

ensure -- from EV_WIDGET
not_shown:notshown

end;

set_automatic_position (position: BOOLEAN)is
-- Setautomatic_position atposition.
-- (from EV_WIDGET)

§3.12 Using the Library 62
require -- from EV_WIDGET
exists:notdestroyed

do
automatic_position := position

ensure -- from EV_WIDGET
automatic_position_set: automatic_position = position

end;

set_automatic_resize (resize: BOOLEAN)is
-- Setautomatic_resize to resize.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
automatic_resize := resize

ensure -- from EV_WIDGET
automatic_resize_set: automatic_resize = resize

end;

set_center_alignmentis
-- Set text alignment of current label to center.
-- (from EV_TEXT_CONTAINER)

require -- from EV_TEXT_CONTAINER
exists:notdestroyed

do
implementation.set_center_alignment

end;

set_insensitive (flag: BOOLEAN)is
-- Set current widget in insensitive mode if
-- flag. This means that any events with an
-- event type of KeyPress, KeyRelease,
-- ButtonPress, ButtonRelease, MotionNotify,
-- EnterNotify, LeaveNotify, FocusIn or
-- FocusOut will not be dispatched to current
-- widget and to all its children. Set it to
-- sensitive mode otherwise.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
implementation.set_insensitive (flag)

ensure -- from EV_WIDGET
flag = insensitive

end;

set_left_alignmentis
-- Set text alignment of current label to left.
-- (from EV_TEXT_CONTAINER)

Functional Requirements §3.1263
require -- from EV_TEXT_CONTAINER
exists:notdestroyed

do
implementation.set_left_alignment

end;

set_pressed (button_pressed: BOOLEAN)is
-- Set Current toggle on and set
-- pressed to True.
-- (from EV_TOGGLE_BUTTON)

require -- from EV_TOGGLE_BUTTON
exists:notdestroyed

do
implementation.set_pressed (button_pressed)

ensure -- from EV_TOGGLE_BUTTON
correct_state: pressed = button_pressed

end;

set_right_alignmentis
-- Set text alignment of current label to right.
-- (from EV_TEXT_CONTAINER)

require -- from EV_TEXT_CONTAINER
exists:notdestroyed

do
implementation.set_right_alignment

end;

showis
-- Make widget and all children (recursively)
-- visible on the screen. (default)
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
implementation.show

ensure -- from EV_WIDGET
shown: shown

end;

toggleis
-- Change the state of the toggel button to
-- opposite
-- (from EV_TOGGLE_BUTTON)

require -- from EV_TOGGLE_BUTTON
exists:notdestroyed

do
implementation.toggle

ensure -- from EV_TOGGLE_BUTTON
state_is_true: pressed =notold pressed

§3.12 Using the Library 64
end;

feature -- Element change

set_font (a_font: EV_FONT)is
-- Set font label tofont_name.
-- (from EV_FONTABLE)

require -- from EV_FONTABLE
exists:notdestroyed;
a_font_exists: a_font /= void;
a_font_specified: a_font.is_specified

do
implementation.set_font (a_font)

end;

set_font_name (a_font_name: STRING)is
-- Set font label toa_font_name.
-- (from EV_FONTABLE)

require -- from EV_FONTABLE
exists:notdestroyed;
a_font_name_exists: a_font_name /= void

local
a_font: EV_FONT

do
!! a_font.make;
a_font.set_name (a_font_name);
set_font (a_font)

end;

set_text (txt: STRING)is
-- Set text of current label totxt.
-- (from EV_TEXT_CONTAINER)

require -- from EV_TEXT_CONTAINER
exists:notdestroyed;
not_a_text_void: txt /= void

do
implementation.set_text (txt)

ensure -- from EV_TEXT_CONTAINER
text_set: text.is_equal (txt)

end;

feature -- Resizing

set_height (new_height: INTEGER)is
-- Set height tonew_height.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed;
positive_height: new_height >= 0

Functional Requirements §3.1265
do
implementation.set_height (new_height)

ensure -- from EV_WIDGET
dimensions_set: implementation.dimensions_set (width, new_height)

end;

set_maximum_height (max_height: INTEGER)is
-- Setmaximum_height to max_height.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed;
large_enough: max_height >= 0

do
implementation.set_maximum_height (max_height)

ensure -- from EV_WIDGET
max_height = max_height

end;

set_maximum_width (max_width: INTEGER)is
-- Setmaximum_width to max_width.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed;
large_enough: max_width >= 0

do
implementation.set_maximum_width (max_width)

ensure -- from EV_WIDGET
max_width = max_width

end;

set_minimum_height (min_height: INTEGER)is
-- Setminimum__height to min_height.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed;
large_enough: min_height >= 0

do
implementation.set_minimum_height (min_height)

ensure -- from EV_WIDGET
min_height = min_height

end;

set_minimum_size (min_width, min_height: INTEGER)is
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed;
large_enough: min_height >= 0;
large_enough: min_width >= 0

do

§3.12 Using the Library 66

_

implementation.set_minimum_size (min_width, min_height)
ensure -- from EV_WIDGET

min_width = min_width;
min_height = min_height

end;

set_minimum_width (min_width: INTEGER)is
-- Setminimum_width to min_width.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed;
large_enough: min_width >= 0

do
implementation.set_minimum_width (min_width)

ensure -- from EV_WIDGET
min_width = min_width

end;

set_size (new_width: INTEGER; new_height: INTEGER)is
-- Set width and height tonew_width
-- andnew_height.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed;
positive_width: new_width >= 0;
positive_height: new_height >= 0

do
implementation.set_size (new_width, new_height)

ensure -- from EV_WIDGET
dimensions_set: implementation.dimensions_set (new_width, new

height)
end;

set_width (new_width: INTEGER)is
-- Set width tonew_width.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed;
positive_width: new_width >= 0

do
implementation.set_width (new_width)

ensure -- from EV_WIDGET
dimensions_set: implementation.dimensions_set (new_width, height)

end;

set_x (new_x: INTEGER)is
-- Set horizontal position relative
-- to parent tonew_x.
-- (from EV_WIDGET)

Functional Requirements §3.1267
require -- from EV_WIDGET
exists:notdestroyed;
unmanaged:notmanaged

do
implementation.set_x (new_x)

ensure -- from EV_WIDGET
x_set: x = new_x

end;

set_x_y (new_x: INTEGER; new_y: INTEGER)is
-- Set horizontal position and
-- vertical position relative to parent
-- to new_x andnew_y.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed;
unmanaged:notmanaged

do
implementation.set_x_y (new_x, new_y)

end;

set_y (new_y: INTEGER)is
-- Set vertical position relative
-- to parent tonew_y.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed;
unmanaged:notmanaged

do
implementation.set_y (new_y)

ensure -- from EV_WIDGET
y_set: y = new_y

end;

feature {NONE} -- Implementation

implementation: EV_TOGGLE_BUTTON_I;
-- (from EV_TOGGLE_BUTTON)

remove_implementationis
-- Remove implementation of Current widget.
-- (from EV_WIDGET)

do
implementation := void

ensure -- from EV_WIDGET
void_implementation: implementation = void

end;

set_defaultis

§3.12 Using the Library 68

OM-

m-

OM-

om-

S)
-- Do the necessary initialization after
-- creation
-- Set default values of Current widget.
-- (from EV_WIDGET)

do
implementation.build
parent.add_child (Current)
managed := parent.manager

end;

set_font_imp (an_implementation: EV_FONTABLE_I)is
-- Setimplementation to an_implementation.
-- (from EV_FONTABLE)

require -- from EV_FONTABLE
an_implementation_exists: an_implementation /= void

do
implementation := an_implementation

end;

feature -- Event - command association

add_button_press_command (mouse_button: INTEGER; command: EV_C
MAND; arguments: EV_ARGUMENTS)is

-- Add ’command’ to the list of commands to
-- be executed when button no ’mouse_button’
-- is pressed
-- (from EV_WIDGET)

do
implementation.add_button_press_command (mouse_button, co

mand, arguments)
end;

add_button_release_command (mouse_button: INTEGER; command: EV_C
MAND; arguments: EV_ARGUMENTS)is

-- Add ’command’ to the list of commands to
-- be executed when button no ’mouse_button’
-- is released
-- (from EV_WIDGET)

do
implementation.add_button_release_command (mouse_button, c

mand, arguments)
end;

add_click_command (command: EV_COMMAND; arguments: EV_ARGUMENTis
-- Add ’command’ to the list of commands to be
-- executed when the button is pressed
-- (from EV_BUTTON)

require -- from EV_BUTTON
valid_command: command /= void

Functional Requirements §3.1269

NTS)

ND;

m-

GU-

)

NTS)

GU-

GU-

)

do
implementation.add_click_command (command, arguments)

end;

add_delete_command (command: EV_COMMAND; arguments: EV_ARGUME
is

-- (from EV_WIDGET)
do

implementation.add_delete_command (command, arguments)
end;

add_double_click_command (mouse_button: INTEGER; command: EV_COMMA
arguments: EV_ARGUMENTS)is

-- Add ’command’ to the list of commands to
-- be executed when button no ’mouse_button’
-- is double clicked
-- (from EV_WIDGET)

do
implementation.add_double_click_command (mouse_button, co

mand, arguments)
end;

add_enter_notify_command (command: EV_COMMAND; arguments: EV_AR
MENTS)is

-- (from EV_WIDGET)
do

implementation.add_enter_notify_command (command, arguments
end;

add_expose_command (command: EV_COMMAND; arguments: EV_ARGUME
is

-- (from EV_WIDGET)
do

implementation.add_expose_command (command, arguments)
end;

add_key_press_command (command: EV_COMMAND; arguments: EV_AR
MENTS)is

-- (from EV_WIDGET)
do

implementation.add_key_press_command (command, arguments)
end;

add_key_release_command (command: EV_COMMAND; arguments: EV_AR
MENTS)is

-- (from EV_WIDGET)
do

implementation.add_key_release_command (command, arguments
end;

§3.12 Using the Library 70

GU-

)

GU-

ts)

TS)
add_leave_notify_command (command: EV_COMMAND; arguments: EV_AR
MENTS)is

-- (from EV_WIDGET)
do

implementation.add_leave_notify_command (command, arguments
end;

add_motion_notify_command (command: EV_COMMAND; arguments: EV_AR
MENTS)is

-- (from EV_WIDGET)
do

implementation.add_motion_notify_command (command, argumen
end;

add_toggle_command (command: EV_COMMAND; arguments: EV_ARGUMEN
is

-- Add ’command’ to the list of commands to be
-- executed when the button is toggled
-- (from EV_TOGGLE_BUTTON)

require -- from EV_TOGGLE_BUTTON
valid_command: command /= void

do
implementation.add_toggle_command (command, arguments)

end;

last_command_id: INTEGERis
-- Id of the last command added by feature
-- ’add_command’
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
Result := implementation.last_command_id

end;

remove_command (command_id: INTEGER)is
-- Remove the command associated with
-- ’command_id’ from the list of actions for
-- this context. If there is no command
-- associated with ’command_id’, nothing
-- happens.
-- (from EV_WIDGET)

require -- from EV_WIDGET
exists:notdestroyed

do
implementation.remove_command (command_id)

end;

Functional Requirements §3.1271
invariant

-- from GENERAL
reflexive_equality: standard_is_equal (Current);
reflexive_conformance: conforms_to (Current);

end -- classMAIN_WINDOW_BUTTON

Figure 3.12.1 shows a screenshot of the example.

§3.12 Using the Library 72
Figure 3.12.1Main windoindexing

Functional Requirements §3.1273

	EiffelVision
	Requirements Specification
	ISE Technical Document
	Modification date: 10/12/98 Copyright ISE, 1998
	Chapter 1: ��Introduction 6
	1.1��Purpose 6
	1.2��Scope 6
	1.3��Definitions, Acronyms and Abbreviations 6
	1.4��References 7
	1.5��Overview 7

	Chapter 2: ��General Description 8
	2.1��Library Perspective 8
	2.2��Library Functions 8
	2.2.1��Graphical User Interface 8
	2.2.2��Events 9
	2.2.3��Commands 10
	2.2.4��Figures 11
	2.2.5��Drag and Drop 13
	2.2.6��Pick and Drop 13

	2.3��User Characteristics 13

	Chapter 3: ��Functional Requirements 14
	3.1��Widgets 14
	3.2��Primitives 21
	3.2.1��ev_button 21
	3.2.2��ev_toggle_button 22
	3.2.3��ev_check_button 24
	3.2.4��ev_radio_button 24
	3.2.5��ev_label 25
	3.2.6��ev_text_component 26
	3.2.7��ev_text_field 28
	3.2.8��ev_password_field 29
	3.2.9��ev_spinbutton 29
	3.2.10��ev_combo_box 29
	3.2.11��ev_text_area 29
	3.2.12��ev_text_editor 30
	3.2.13��ev_separator 30
	3.2.14��ev_range 30
	3.2.15��ev_SCROLLBAR 30
	3.2.16��ev_Scale 31
	3.2.17��ev_list 31
	3.2.18��ev_multi_column_list 32
	3.2.19��ev_tree 32
	3.2.20��ev_menu 32
	3.2.21��ev_menu_item 32
	3.2.22��EV_MENU_BAR 33
	3.2.23��ev_option_menu 34
	3.2.24��ev_frame 34
	3.2.25��ev_progressbar 34

	3.3��Drawables 34
	3.3.1��ev_drawable 34
	3.3.2��ev_screen 34
	3.3.3��ev_drawing_area 35
	3.3.4��ev_pixmap 35

	3.4��Containers 36
	3.4.1��ev_window 37
	3.4.2��ev_dialog 41
	3.4.3��ev_print_dialog 41
	3.4.4��ev_color_selection_dialog 41
	3.4.5��ev_font_selection_dialog 41
	3.4.6��ev_file_selection_dialog 41
	3.4.7��ev_file_open_dialog 41
	3.4.8��ev_file_save_dialog 41
	3.4.9��ev_input_dialog 41
	3.4.10��ev_message_dialog 41
	3.4.11��ev_information_dialog 41
	3.4.12��ev_question_dialog 41
	3.4.13��ev_warning_dialog 41
	3.4.14��ev_error_dialog 41
	3.4.15��ev_fixed 41
	3.4.16��ev_box 42
	3.4.17��ev_vertical_box 43
	3.4.18��ev_horizontal_box 43
	3.4.19��ev_table 44
	3.4.21��ev_scrollable_area 45
	3.4.22��ev_split_area 46
	3.4.23��ev_notebook 47

	3.5��Events 48
	3.5.1��General Events 48
	3.5.2��Widget Specific Events 49

	3.6��Commands 49
	3.7��Arguments 50
	3.8��Event Data 50
	3.8.1��ev_button_event_data 51
	3.8.2��ev_motion_event_data 52
	3.8.3��ev_key_event_data 52

	3.9��Figures 53
	3.10��Timers? 53
	3.11��Other notes 53
	3.12��Using the Library 53

	1 �� Introduction
	1.1 Purpose
	This document is the functional specification of E...
	The audience of this document are the developers a...

	1.2 Scope
	This library is a new version of ISE’s EiffelVisio...
	EiffelVision is a software library for application...

	1.3 Definitions, Acronyms and Abbreviations
	1.4 References
	1.5 Overview
	Chapter 2 describes the general factors that affec...

	2 �� General Description
	2.1 Library Perspective
	EiffelVision is an abstract, is multi-platform lib...

	2.2 Library Functions
	The main functions of the library are to provide c...
	2.2.1 Graphical User Interface
	EiffelVision provides a set of GUI components and ...
	Figure 1 Class hierarchy for EiffelVision widgets
	Most of the widgets in EiffelVision have events an...

	2.2.2 Events
	An event is an external action, usually triggered ...
	Simple examples of events are mouse button pushes ...
	In an application, not all events will be meaningf...
	Event
	Context
	Left click
	Right click
	Cursor out
	Keyboard
	Window_1
	•
	•
	Window_2
	•
	Button_1
	•
	•
	•
	The • mark signal the entries for which the given ...
	As its execution progresses, the state domain may ...

	2.2.3 Commands
	When an event occurs in a certain context, and the...
	In X toolkits such as Xt, OpenLook and Motif the c...
	Callbacks also exist under Windows, allowing Windo...
	The EiffelVision notion of command is more abstrac...
	Here is a general model for a class describing und...
	deferred class UNDOABLE_COMMAND inherit COMMAND fe...
	undoable: BOOLEAN is True;
	execute is
	-- Execute the action of this command deferred ens...

	undo is
	-- Cancel the action of this command deferred ensu...

	redo is
	-- Re-execute previously undone command require un...

	feature {NONE} undone: BOOLEAN
	-- Has the command been undone? end -- class COMMA...
	The redo command is often, but not always, identic...
	A list of objects of type UNDOABLE_COMMAND is call...
	history_list.item.undo; history_list.back
	Dynamic binding ensures that the proper version of...

	2.2.4 Figures
	The interface of an EiffelVision application may i...
	The EiffelVision model figures is inspired from a ...
	• We may view the reality behind the model (in an ...
	• Then, the world is a set of such figures.
	• The windows are rectangular areas of the world.
	• The map is a representation of a part of the wor...
	• And the device is a physical medium on which the...

	Figure 2 The graphical model
	The four basic concepts — world, figure, window, d...
	The above figure shows the three planes: world (bo...
	Note that two transformations are involved, both o...
	• Move a window with respect to the world (as in w...
	• Change the scale of the window with respect to t...

	2.2.5 Drag and Drop
	2.2.6 Pick and Drop

	2.3 User Characteristics
	Users of EiffelVision are software developers who ...

	3 �� Functional Requirements
	3.1 Widgets
	A widget is a basic component when building the us...
	Creating widgets is simple and consistent. All the...
	make (par: EV_CONTAINER) is
	Procedure ‘make’ has one argument, parent, which i...
	Procedure ‘make’ creates the widget using default ...

	3.2 Primitives
	3.2.1 ev_button
	Class ev_button is one of the most useful user int...
	A button has a 3D appearance as the underlying too...
	The reason why a button is not specified as a cont...

	3.2.2 ev_toggle_button
	ev_toggle_button is a descendant of ev_button and ...
	Toggle buttons are the basis for check buttons and...
	The default state after creation is ‘not pressed’....

	3.2.3 ev_check_button
	Check buttons are similar to toggle buttons, but t...

	3.2.4 ev_radio_button
	Radio buttons are similar to check buttons except ...

	3.2.5 ev_label
	A label ia a static text that can be put anywhere ...

	3.2.6 ev_text_component
	ev_text_component is a deferred class and an ances...

	3.2.7 ev_text_field
	A text field allows the application user to enter ...
	Sometimes it is necessary to check the validity of...
	Offer a class EV_TEXT_FILTER with a redefineable f...

	3.2.8 ev_password_field
	A password field is a text field which can be used...

	3.2.9 ev_spinbutton
	Spinbuttons are single line entries with two small...

	3.2.10 ev_combo_box
	A combo box contains of a text field a button. Whe...

	3.2.11 ev_text_area
	A text area is like a text field, but with a possi...

	3.2.12 ev_text_editor
	A text editor is a complete multi-line text widget...

	3.2.13 ev_separator
	3.2.14 ev_range
	ev_range is a deferred class and a common ancestor...

	3.2.15 ev_SCROLLBAR
	Scrollbars can be used by themselves to specify re...
	EV_SCROLLBAR is a deferred class, it is the ancest...
	The events that can occur on a scrollbar include t...
	Depending on the toolkit, there may be a possibili...

	3.2.16 ev_Scale
	EV_SCALE is a deferred class, ancestor of EV_HORIZ...
	Like a scrollbar, a scale \has a move event and a ...
	The granularity, minimum, maximum, thumb value and...
	The major difference between a scrollbar and the s...
	By default, the maximum of the scale is on the bot...

	3.2.17 ev_list
	A list is a component with a list of options which...

	3.2.18 ev_multi_column_list
	A multi column list has the functionality of list ...

	3.2.19 ev_tree
	A tree is a component which allows data to be repr...

	3.2.20 ev_menu
	A menu is a rectangular area with a vertical list ...

	3.2.21 ev_menu_item
	A menu item is a component that can be put on a me...

	3.2.22 EV_MENU_BAR
	A menu bar is a group of menu-bar items that appea...

	3.2.23 ev_option_menu
	An option menu looks like a button. When it is cli...

	3.2.24 ev_frame
	A frame is simple widget that draws a border aroun...

	3.2.25 ev_progressbar
	A progressbar can be used to show progress in the ...

	3.3 Drawables
	3.3.1 ev_drawable
	A drawable is a common ancestor for component that...

	3.3.2 ev_screen
	A screen is a drawable and refers to the screen ou...

	3.3.3 ev_drawing_area
	Drawing area is a widget that can contain pictures...

	3.3.4 ev_pixmap
	A pixmap is a picture consisting of several pixels...
	Pixmap is itself a drawable, but it can be put ins...

	3.4 Containers
	A container is a widget which allows other widgets...
	Usually container manages its children. It means t...
	3.4.1 ev_window
	A window is a bordered rectangular area visible on...

	3.4.2 ev_dialog
	Dialog is a special window which can be used for p...

	3.4.3 ev_print_dialog
	3.4.4 ev_color_selection_dialog
	3.4.5 ev_font_selection_dialog
	3.4.6 ev_file_selection_dialog
	3.4.7 ev_file_open_dialog
	3.4.8 ev_file_save_dialog
	3.4.9 ev_input_dialog
	3.4.10 ev_message_dialog
	3.4.11 ev_information_dialog
	3.4.12 ev_question_dialog
	3.4.13 ev_warning_dialog
	3.4.14 ev_error_dialog
	3.4.15 ev_fixed
	Fixed is an invisible container that allows unlimi...

	3.4.16 ev_box
	Box, like fixed, is meant to be used to collect ot...
	By default a box is homogeneous, which means that ...
	The default spacing between the children is 0. Tha...

	3.4.17 ev_vertical_box
	A box in vertical position.

	3.4.18 ev_horizontal_box
	A box in horizontal position.

	3.4.19 ev_table
	Tables are another way to pack widgets. Table cont...
	The homogeneous attribute of the table has to do w...
	The rows and columns are laid out from 0 to n, whe...
	Figure 3.4.20 Table layout with two rows and two c...
	The coordinate system starts in the upper left han...

	3.4.21 ev_scrollable_area
	Scrollable area is a container widget with horizon...

	3.4.22 ev_split_area
	Split area is a container widget with two children...

	3.4.23 ev_notebook
	Notebook is a collection of pages that overlap eac...
	Each page is a container that allows one widget to...

	3.5 Events
	EiffelVision has general events, which are common ...
	3.5.1 General Events
	The following list describes the general events.

	3.5.2 Widget Specific Events
	As the name suggests these events are specific for...

	3.6 Commands
	A command is an object created by the library user...
	The above specification and class interface are on...

	3.7 Arguments
	Arguments for commands are currently passed using ...
	Thanks to the tuple mechanism, argument types are ...

	3.8 Event Data
	Event data is information specific to an event, fo...
	3.8.1 ev_button_event_data
	This class represents event data for button events...

	3.8.2 ev_motion_event_data
	3.8.3 ev_key_event_data

	3.9 Figures
	Figures work as in old EiffelVision and the implem...

	3.10 Timers?
	3.11 Other notes
	Colormap handling under X Windows System so that i...

	3.12 Using the Library
	EiffelVision has been designed to be simple to use...
	The following class implements a main window of an...
	The following class presents the main window butto...
	Figure 3.12.1 shows a screenshot of the example.
	Figure 3.12.1 Main windoindexing�
	Figure 3.12.2 description: “EiffelVision horizonta...
	Figure 3.12.3 status: “See notice at end of class”...
	Figure 3.12.4 id: “$Id: ev_horizontal_box.e,v 1.4 ...
	Figure 3.12.5 date: “$Date: 1998/09/29 02:01:19 $”...
	Figure 3.12.6 revision: “$Revision: 1.4 $”�
	Figure 3.12.7 �
	Figure 3.12.8 class interface�
	Figure 3.12.9 EV_HORIZONTAL_BOX�
	Figure 3.12.10 �
	Figure 3.12.11 creation �
	Figure 3.12.12 make�
	Figure 3.12.13 �
	Figure 3.12.14 end -- class EV_HORIZONTAL_BOX�
	Figure 3.12.15 w of the example

