
The new EiffelVision Library

version 4.3 (draft)

Interactive Software Engineering

Manual identification
The New EiffelVision Library, ISE Technical Report TR-EI-65/NE.

Publication history
First published in draft form: April 1999 (this version). Corresponds to release 4.3 of the ISE Eiffel environment.

Authors
Sami Kallio, Leila Ait Kaci, with help from Paulette LeBlanc.

Software credits
Leila Ait Kaci, Sami Kallio, Sam O’Connor.

Cover design
Rich Ayling.

Copyright notice and proprietary information
Copyright © Interactive Software Engineering Inc. (ISE), 1999. May not be reproduced in any form (including
electronic storage) without the written permission of ISE. “Eiffel Power” and the Eiffel Power logo are
trademarks of ISE.

All uses of the product documented here are subject to the terms and conditions of the ISE Eiffel user license. Any
other use or duplication is a violation of the applicable laws on copyright, trade secrets and intellectual property.

Special duplication permission for educational institutions
Degree-granting educational institutions using ISE Eiffel for teaching purposes as part of the Eiffel University
Partnership Program may be permitted under certain conditions to copy specific parts of this book. Contact ISE
for details.

About ISE
ISE (Interactive Software Engineering) is dedicated to improving software quality and productivity through
advanced methods, tools and languages, based on sound scientific principles and on the systematic application
of object technology.
The company provides a complete line of development tools as well as on-site consulting, library development
services, and a training program on all aspects of O-O technology: analysis, design, implementation
techniques, graphics, library building, Eiffel language, project management, large system design etc.

ISE is the original designer of the Eiffel method and language and a member of NICE, the Nonprofit
International Consortium for Eiffel.

For more information
Interactive Software Engineering Inc.
ISE Building, 2nd floor
270 Storke Road
Goleta, CA 93117 USA
Telephone 805-685-1006, Fax 805-685-6869

Internet and e-mail
ISE maintains a rich source of information athttp://eiffel.com, with more than 1200 Web pages including
online documentation, downloadable files, product descriptions, links to ISE partners, University Partnership
program, mailing list archives, announcements, press coverage, Frequently Asked Questions, Support pages,
and much more.

Write to info@eiffel.com for information about products and services. Write touserlist-
request@eiffel.com to subscribe to the ISE Eiffel user list.

Support programs
ISE offers a variety of support options tailored to the diverse needs of its customers. Write toinfo@eiffel.com
or check the support pages athttp://eiffel.com for details.

http://eiffel.com
mailto:info@eiffel.com
mailto:userlist-request@eiffel.com
mailto:userlist-request@eiffel.com
mailto:info@eiffel.com
http://eiffel.com

Preface: Why EiffelVision?
The EiffelVision library offers an object-oriented framework for graphical user
interface (GUI) development. Using EiffelVision, developers can access all
necessary GUI components — “widgets”, “dialogs” and “controls”as well as truly
graphical elements such as figures, points, lines, arcs, polygons and the like — to
develop a modern, functional and good-looking graphical interactive application.

EiffelVision has played a major role in ISE Eiffel and provided numerous Eiffel
projects with a powerful, portable graphics development platform. To reflect the
advances in graphical development toolkits, a “New EiffelVision” library
development was undertaken in 1998 and the first version made available with ISE
Eiffel 4.3 in March of 1999. This document serves as functional specification and
user reference for the new EiffelVision library.

EiffelVision scope

The EiffelVision library addresses all the major needs of developers of systems
supporting modern graphical interfaces. EiffelVision runs on Microsoft Windows
NT, Windows 95/98, all major Unix platforms (including Linux) and VMS. All
versions are fully source-compatible; with only a recompile, applications will run on
every supported platform with the native look-and-feel.

EiffelVision provides an effective way of building advanced graphical
applications using user interface standards and toolkits (such as Microsoft
Windows and GTK) without having to learn the details of the toolkits, their API
and their C interfaces. Instead, you can use EiffelVision to work entirely in terms
of high level abstractions representing windows, resources, graphical figures,
menus, buttons etc., and apply clearly understandable operations to the
corresponding objects.

EiffelVision supports both interface objects and graphical figures such as
circles and polygons, as well as composite figures.

PREFACEiv
EiffelVision architecture

EiffelVision relies on a two-tiered architecture illustrated by the following figure.

The two tiers play complementary roles:

• At the top level, EiffelVision provides fully portable graphics.

• At the lower level, platform-specific libraries cover the graphical mechanisms
of graphics platforms such as Windows and X.

The lower tier serves for the implementation of the upper tier, but can also be used
independently. For example WEL has had a resounding success with Windows
developers who need an advanced mechanism for building Windows-specific
graphical applications, taking advantage of every facility of the Windows API
(Application Programming Interface) and of the Eiffel approach, but do not need
portability on the client side.

This flexibility of the EiffelVision architecture, enabling users to work at their
level of choice — EiffelVision level for portable graphics, lower tier for platform-
specific development, and possibly a mix of the two — has proved to be a key
attraction of the library.

The new EiffelVision and its benefits

EiffelVision was originally built as an Eiffel wrapper around an early version of the
Motif toolkit for X Windows. The introduction of a Windows version led to the two-
tier architecture shown above, and to the development of the WEL library, which has
proved on its own to be one of the most attractive components of the ISE Eiffel
offering. The Motif part was covered by MEL (Motif Eiffel Library).

In 1998 ISE made the decision to update the design of EiffelVision to reflect
advances in GUI technology on various platforms. The new EiffelVision retains the
principles described above and follows the EiffelVision of powerful portable graphics;
it develops and enhances these original ideas through a number of major advances.

EiffelVision

WEL
(Windows

Eiffel
Library)

GEL
(GTK
Eiffel

Library)

...

§ SCOPE v
Thanks to the new EiffelVision developers of GUI applications can benefit from
a number of improvements:

• The new EiffelVision gives developers full access to thepowerful widgets
(controls) available in modern graphical toolkits, such as tree views, multi-
column lists (list views), notebooks, status bars, advanced dialogs and many
others from both Windows and X toolkits.

• The library relies on a much simplified model of the relationships between the
widgets, removing the notion of “attachment” and introducing a simple notion
of “container” for defining the relative placement of widgets within a window.

• The new EiffelVisionoptimizes memory usageby avoiding the duplication of
information. This enables developers to build “lean and mean” graphical
applications.

• The command model, managing the relationship between an application’s user
interface and its semantic model, has been greatly improved and simplified
thanks to the use of Eiffel’s newagentmechanism.

• On the X side, EiffelVision now relies on theGTK toolkit, a high-quality library
providing numerous widgets and many other useful facilities.

• Supporting the new EiffelVision, ISE is developing a new version of the
EiffelBuild interactive application builder (not described further in this
manual), providing powerful facilities for building the EiffelVision-based GUI
component of an application directly from the application’s processing classes.

Scope

Throughout this document, the terms “EiffelVision” and “the library” refer to the
new library, while the term “old EiffelVision” refers to the old library. Although
EiffelVision is a rewrite of old EiffelVision, parts of the old EiffelVision are used in
the implementation of the library whenever appropriate.

Definitions, acronyms and abbreviations

Eiffel — object-oriented language and method, based on Design by Contract
principles and described in the bookEiffel : The Language [Meyer 1992].

EiffelVision — object oriented GUI and graphic library for application
development. In this manual, denotes the new version of EiffelVision introduced
with ISE Eiffel release 4.3.

Old EiffelVision — Older version of Eiffel Vision (still available under 4.3).

GTK — The General Image Manipulation Program (GIMP) tookit. See [GTK 1998].

Widget — GUI component in EiffelVision. Also called “control” or “context”.

PREFACEvi
References

[Meyer 1992]

Bertrand Meyer;Eiffel: The Language; Prentice Hall Object-Oriented Series,
1991; second revised printing, 1992. Seehttp://eiffel.com/doc/
documentation.html#etl.

[Meyer 1997]

Bertrand Meyer;Object-Oriented Software Construction, second edition;
Prentice Hall Object-Oriented Series, 1997. Seehttp://eiffel.com/doc/
oosc.html.

[GTK 1998]

GTK Web page; http://www.gtk.org .

Status of this document and of the library

This manual is a draft and you will notice that some sections are sketched or
missing. The current version of the new EiffelVision library is still a beta version.
Not all the functionalities described in this manual are implemented; conversely, not
all implemented functionalities are documented.

We will be grateful for any problem report. Please use the EiffelVision Talkitover
group at http://talkitover.com/vision to report problems and discuss future
evolutions of EiffelVision.

Prerequisites

The manual assumes that you have a reasonably good knowledge of Eiffel and
object-oriented software development and a good understanding of the basic conceps
of Graphical User Interfaces. Platform-specific knowledge of GUI programming is
not necessary.

Organisation of the manual

Chapter 1, “The EiffelVision model”, describes the general mechanisms and
principles used by the library.

Chapter 2, “EiffelVision basics”, contains the detailed description of the
EiffelVision kernel.

Chapter3, “Containers”, Chapter4, “Primitives”, Chapter5, “Items”, Chapter6,
“Components”and Chapter7, “StandardDialogs” contain the detailed description
of the containers, primitives, items, components and standard dialogs.

http://eiffel.com/doc/oosc.html
http://eiffel.com/doc/oosc.html
http://talkitover.com/vision
http://www.gtk.org
http://eiffel.com/doc/documentation.html#etl
http://eiffel.com/doc/documentation.html#etl

Contents
The new EiffelVision Library i

Preface: Why EiffelVision? iii

Contents vii

1 The EiffelVision model 1
1.1 Events 1
1.2 Commands 2
1.3 Figures 4
1.4 Drag and Drop 5
1.5 Pick and Drop 5

2 EiffelVision basics 7
2.1 Widgets 7
2.2 Events 19
2.3 Event Data 20
2.4 Commands 23
2.5 Undoable Command 24
2.6 Routine Command 24
2.7 Arguments 25
2.8 Timers 26
2.9 Colors 26
2.10 Fonts 26

3 Containers 27
3.1 EV_WINDOW 28
3.2 EV_DIALOG 34
3.3 EV_FIXED 35
3.4 EV_BOX 36
3.5 EV_VERTICAL_BOX 37
3.6 EV_HORIZONTAL_BOX 38
3.7 EV_TABLE 38
3.8 EV_DYNAMIC_TABLE 41
3.9 EV_SCROLLABLE_AREA 42
3.10 EV_FRAME 43

CONTENTSviii
3.11 EV_SPLIT_AREA 44
3.12 EV_NOTEBOOK 45

4 Primitives 49
4.1 EV_BUTTON 49
4.2 EV_TOGGLE_BUTTON 50
4.3 EV_CHECK_BUTTON 52
4.4 EV_RADIO_BUTTON 53
4.5 EV_OPTION_BUTTON 54
4.6 EV_LABEL 55
4.7 EV_TEXT_COMPONENT 55
4.8 EV_TEXT_FIELD 60
4.9 EV_PASSWORD_FIELD 61
4.10 EV_SPINBUTTON 62
4.11 EV_COMBO_BOX 62
4.12 EV_TEXT_AREA 64
4.13 EV_TEXT_EDITOR 64
4.14 EV_SEPARATOR 64
4.15 EV_RANGE 65
4.16 EV_SCROLLBAR 65
4.17 EV_SCALE 65
4.18 EV_LIST 66
4.19 EV_MULTI_COLUMN_LIST 68
4.20 EV_TREE 73
4.21 EV_PROGRESS_BAR 74
4.22 EV_DRAWING_AREA 74

5 Items 75
5.1 EV_LIST_ITEM 77
5.2 EV_TREE_ITEM 79
5.3 EV_MENU_ITEM 81
5.4 EV_CHECK_MENU_ITEM 82
5.5 EV_RADIO_MENU_ITEM 83
5.6 EV_STATUS_BAR_ITEM 84
5.7 EV_MULTI_COLUMN_LIST_ROW 85

6 Components 89
6.1 EV_PIXMAP 89
6.2 EV_SCREEN 90
6.3 EV_MENU 90
6.4 EV_STATIC_MENU_BAR 91
6.5 EV_STATUS_BAR 92

7 Standard Dialogs 93
7.1 EV_STANDARD_DIALOG 93
7.2 EV_MESSAGE_DIALOG 93
7.3 EV_INFORMATION_DIALOG 98

CONTENTS ix
7.4 EV_QUESTION_DIALOG 99
7.5 EV_WARNING_DIALOG 99
7.6 EV_ERROR_DIALOG 99
7.7 EV_FILE_SELECTION_DIALOG 100
7.8 EV_FILE_SAVE_DIALOG 100
7.9 EV_FILE_OPEN_DIALOG 100
7.10 EV_DIRECTORY_SELECTION_DIALOG 100
7.11 EV_FONT_SELECTION_DIALOG 100
7.12 EV_COLOR_SELECTION_DIALOG 100
7.13 EV_PRINT_DIALOG 100

CONTENTSx

1

The EiffelVision model
EiffelVision is an abstract, multi-platform library that provides components for
building the GUI for an application and drawing figures onto the screen.

Supported platforms include :

• Windows NT / 95 / 98.

• Unix, Linux and all other platforms supported by the GTK toolkit.

EiffelVision contains a set of GUI components and methods to associate actions
with GUI events..

Most of the widgets in EiffelVision have events to which you can associate
commands. For example, there is an actionButton_press for a button widget.

1.1 Events

An event is an external action, usually triggered by the user, which can affect the
execution of the application.

Simple examples of events are mouse button clickes and keystrokes. Others
include timer activation, mouse movement, auto-repeating keyboard, context
resizing and changing of window resources.

In an application, not all events will be meaningful for each context. For example
a keystroke is typically ignored if it occurs outside of any window. As a result part
of which defines an application is the two-dimensional grid of what events are
meaningful in what context — astate domain. The following diagram is a simple
example of state domain.

THE EIFFELVISION MODEL §1.22
The • mark denotes the entries for which the given event is meaningful. For
example, the Cursor out event (which occurs when you move the cursor out of
itscurrent context) is meaningful forWindow_1andButton_1but not forWindow_2.

As execution progresses, the state domain can change. Because a typical
application can give you the choice between several possible events in several
contexts, the state domain can be quite large. However a certain operation can trigger
a confirmation panel in which theapplicationonly recognizes two events: clicking
either theOK or Cancelbutton. In this case, the application enteres a new, smaller
state domain.

1.2 Commands

When an event occurs in a certain context and the context-event pair is part of the
current state domain, the application executes a certain action. That action is
represented in Eiffel by anobject — an instance of the EiffelVision class
EV_COMMAND. More precisely, it is a direct instance of one of its proper
descendants.

In X toolkits such as Xt, OpenLook and Motif, the closest notion is that of a
callback— a reference to a certain C function. You can plant a callback in the toolkit
to specify that the corresponding function must be called when a certain event
occurs.

Callbacks also exist under Windows, allowing Windows components to call
application-specific functions provided by you. This avoids the massive switch
instruction that is traditionally found in Windows applications.

The EiffelVision notion of command is more abstract than the notion of callback.
It conforms to the object-oriented model (where every command will be an object)
and provides added power. In addition to theexecuteprocedure, which describes the
execution of the command and corresponds to the callback, command objects can
have other features — in particular, acancelprocedure that deletes the effect of the
command. This makes it possible to equip an application with an unlimited undo-
redo mechanism, as described in chapter 12 ofObject-Oriented Software
Construction [Meyer 1997].

Event

Context

Left click Right click Cursor out Keyboard

Window_1 • •
Window_2 •
Button_1 • • •

§1.2 COMMANDS 3
The following is a general model for a class describing undoable commands:

deferred class
UNDOABLE_COMMAND

inherit

COMMAND

feature
undoable: BOOLEANis True;
executeis

-- Execute the action of this command
deferred
ensure

done:not undone
end

undois
-- Cancel the action of this command

deferred
ensure

undoing_occured: undone
end

redo is
 -- Re-execute previously undone command

require
 undone: undone

deferred
ensure

executed:not undone
end

feature {NONE}

undone: BOOLEAN
-- Has the command been undone?

end -- class COMMAND

Theredo command is often identical toexecute.

A list of objects of typeUNDOABLE_COMMANDis called ahistory list .
Keeping a history list enables an application to support a multiple-level undo-redo
mechanism. When a user requests an “undo”, the application can simply execute:

history_list.item.undo;
history_list.back

THE EIFFELVISION MODEL §1.34
Dynamic binding ensures that the proper version ofundoapplies to each selected
command (history_list.item) in the list. A similar scheme is used when the user
requests a “redo”.

1.3 Figures

The interface of an EiffelVision application can also include graphical figures.

The EiffelVision model figures are based on a familiar notion: geographical
maps. The design of a map uses several levels of abstraction, illustrated on the
following figure.

You can view the reality behind the model (in an already abstracted form) as a set
of geometrical shapes orfigures. On a map the figures represent rivers, roads, towns
and other geographical objects. Using this schema, then:

window1

window2

window3

window4

DEVICE

WINDOW

WORLD

FIGURES

The
Graphical
Model

§1.4 DRAG AND DROP 5
• Theworld is a set of such figures.

• The windows are rectangular areas of the world.

• The map is a representation of a part of the world which can contain one or more
windows. For example, a map can have one main window devoted to a country,
and subsidiary windows devoted to large cities or outlying parts (as with Hawaii
in maps of the USA).

• Thedeviceis a physical medium on which the map is displayed. The device is
usually a sheet of paper, but we may also use a computer screen. Various parts
of the device will be devoted to the various windows.

The four basic concepts —world , figure, window, device— transpose readily
to general graphical applications, where the world may contain arbitrary figures of
interest to a certain computer application, rather than just representations of
geographical objects. Rectangular areas of the world (windows) will display on
rectangular areas of the device (the computer screen).

The figure later in this section shows the three planes: world (bottom), window
(middle) and device (top). The notion of window plays a central role, as each window
is associated both with an area of the world and with an area of the device. Windows
also cause the only significant extension to the basic map concepts: support for
hierarchically nested windows. The windows can have subwindows, with no limit on
the nesting level, although no nesting appears on the figure.

Note that two transformations are involved, both of which may include a
translation and a scale factor: from world to window, and from window to device.
This gives the necessary flexibility to a model:

• You can move a window with respect to the world (as in when drawing a map
of a different part of a country) or with respect to the device (as when moving a
map on your desk).

• You can change the scale of the window with respect to the world (as when
changing the scale of a map, the map size remaining constant) or with respect
to the device (as when deciding to use a smaller or bigger map).

1.4 Drag and Drop
To be completed

1.5 Pick and Drop
To be completed

THE EIFFELVISION MODEL §1.56

2

EiffelVision basics
This chapter describes the kernel of the EiffelVision library and the basic mechanism
to use its classes.

2.1 Widgets
As mentioned in the previous chapter, a widget is a basic graphical object. In Eiffel
Vision, there are two kinds of widgets :

• Containers — widget that allows other widgets to be put inside itself.

• Primitives — widget that cannot accept any widget inside itself.

Creation

Creating a widget is simple and consistent. All the widgets except the multi-column
list have the creation proceduremake:

make (par: EV_CONTAINER)

Proceduremakehas one argument,par, an EiffelVision container denoting the
widget’s parent. Ifpar is void, the widget does not appear graphically at creation, but
only when you give it a parent later on during execution using theset_parent
procedure. A widget without a parent will not be destroyed; to avoid memory leaks,
you should destroy all unnecessary widgets without parents.

Proceduremakecreates the widget using default setting for the specific type of
widget. Some widgets have additional creation procedures, which you can use when
you need finer control over widget creation.

Management

There are two different types of behavior for a widget:

• Managed

• Unmanaged

This behavior depends on the parent’s type.

EIFFELVISION BASICS §2.18
An attributemanageddetermines which behavior type the widget follows. An
unmanaged widget freely chooses its size, minimum size and position — the parent
has no effect on these parameters. On the contrary, a managed widget can only set
its minimum size — the size and position of the widget depends directly of those of
the parent.

Most of the containers manage the behavior of their children. The only exceptions
are theEV_FIXED andEV_SCROLLABLE_AREA .

However, a managed widget can choose its behavior inside the parent.

A manager container actually manages cells. Each child widget is in one cell.
These cells automatically take the size and position the container gives them, except
if the widget inside has the optionexpandableset toFalse. In this case, neither the
cell or widget resizes and the container reserves the resting space for the other cells.

Inside these cells, the widgets have a certain freedom set by two options :
horizontal_resizableandvertical_resizable. These options determine if the widget
will resize itself inside its cell or not. If the widget does not change size, then the
widget moves into the center of the cell.

class

indexing
description: "EiffelVision widget. Most general notion of widget (i.e. user interface object)."
status: "See notice at end of class"
names: widget
date: "$Date: 1999/03/19 20:19:00 $"
revision: "$Revision: 1.36 $"

deferred class interface
EV_WIDGET

feature -- Access

parent: EV_WIDGET
-- The parent of the Current widget
-- Can be void.

require
exists:not destroyed

feature -- Measurement

height: INTEGER
-- Height of the widget

require

§2.1 WIDGETS 9
exists:not destroyed
ensure

positive_height: Result >= 0

minimum_height: INTEGER
-- Minimum height that application wishes widget
-- instance to have

require
exists:not destroyed

ensure
positive_height: Result >= 0

minimum_width: INTEGER
-- Minimum width that application wishes widget
-- instance to have

require
exists:not destroyed

ensure
positive_height: Result >= 0

width: INTEGER
-- Width of the widget

require
exists:not destroyed

ensure
positive_width: Result >= 0

x: INTEGER
-- Horizontal position relative to parent

require
exists:not destroyed

y: INTEGER
-- Vertical position relative to parent

require
exists:not destroyed

feature -- Status report

background_color: EV_COLOR
-- Color used for the background of the widget

require

EIFFELVISION BASICS §2.110
exists:not destroyed
ensure

valid_result: Result /= void

expandable: BOOLEAN
-- Does the widget expand its cell to take the
-- size the parent would like to give to it.

require
exists:not destroyed

foreground_color: EV_COLOR
-- Color used for the foreground of the widget
-- usually the text.

require
exists:not destroyed

ensure
valid_result: Result /= void

horizontal_resizable: BOOLEAN
-- Does the widget change its width when the parent
-- or the user want to resize the widget

require
exists:not destroyed

insensitive: BOOLEAN
-- Is current widget insensitive to
-- user actions?
-- (If it is, events will not be dispatched
-- to Current widget or any of its children)

require
exists:not destroyed

managed: BOOLEAN
-- Is the geometry of current widget managed by its
-- container? This is the case always unless
-- parent.manager = False (Always true except
-- when the container is EV_FIXED). This is
-- set in the procedure set_default

shown: BOOLEAN
-- Is current widget visible?

require

§2.1 WIDGETS 11
exists:not destroyed

vertical_resizable: BOOLEAN
-- Does the widget change its width when the parent
-- or the user want to resize the widget

require
exists:not destroyed

feature -- Status setting

hide
-- Make widget invisible on the screen.

require
exists:not destroyed

ensure
not_shown:not shown

set_default_colors
-- Initialize the colors of the widget

require
exists:not destroyed

set_default_minimum_size
-- Initialize the size of the widget.
-- Redefine by some widgets.

require
exists:not destroyed

set_default_options
-- Initialize the options of the widget.

require
exists:not destroyed

set_expand (flag: BOOLEAN)
-- Make flag the new expand option.

require
exists:not destroyed

set_focus
-- Set focus to Current

require
exists:not destroyed

EIFFELVISION BASICS §2.112
set_horizontal_resize (flag: BOOLEAN)
-- Adapt resize_type to flag.

require
exists:not destroyed

ensure
horizontal_resize_set: horizontal_resizable = flag

set_insensitive (flag: BOOLEAN)
-- Set current widget in insensitive mode.
-- This means that any events with an
-- event type of KeyPress, KeyRelease,
-- ButtonPress, ButtonRelease, MotionNotify,
-- EnterNotify, LeaveNotify, FocusIn or
-- FocusOut will not be dispatched to current
-- widget and to all its children.

require
exists:not destroyed

ensure
insensitive = flag

set_vertical_resize (flag: BOOLEAN)
-- Adapt resize_type to flag.

require
exists:not destroyed

ensure
vertical_resize_set: vertical_resizable = flag

show
-- Make widget visible on the screen. (default)
-- Do nothing if the widget has no parent.

require
exists:not destroyed;
has_parent: parent /= void

ensure
shown: (parent /= void)implies shown

feature -- Element change

set_background_color (color: EV_COLOR)
-- Make color the new background_color

require

§2.1 WIDGETS 13
exists:not destroyed;
valid_color: is_valid (color)

ensure
background_color_set: background_color = color

set_foreground_color (color: EV_COLOR)
-- Make color the new foreground_color

require
exists:not destroyed;
valid_color: is_valid (color)

ensure
foreground_color_set: foreground_color = color

set_parent (par: EV_CONTAINER)
-- Make par the new parent of the widget.
-- par can be Void then the parent is the screen.

require
exists:not destroyed

ensure
parent_set: parent = par

feature -- Resizing

set_height (value: INTEGER)
-- Make value the new height.
-- widget must be unmanaged.

require
exists:not destroyed;
unmanaged:not managed;
positive_height: value >= 0

ensure
dimensions_set: implementation.dimensions_set (width, value)

set_minimum_height (value: INTEGER)
-- Make value the new minimum_height.

require
exists:not destroyed;
large_enough: value >= 0

ensure
minimum_height_set: implementation.minimum_height_set (value)

set_minimum_size (min_width, min_height: INTEGER)

EIFFELVISION BASICS §2.114

h,
-- Make min_width the new minimum_width
-- and min_height the new minimum_height.

require
exists:not destroyed;
large_enough: min_height >= 0;
large_enough: min_width >= 0

ensure
minimum_dimension_set: implementation.minimum_dimensions_set (min_widt

min_height)

set_minimum_width (value: INTEGER)
-- Make value the new minimum_width.

require
exists:not destroyed;
large_enough: value >= 0

ensure
minimum_width_set: implementation.minimum_width_set (value)

set_size (new_width: INTEGER; new_height: INTEGER)
-- Make new_width the new width
-- and new_height the new height.
-- widget must be unmanaged.

require
exists:not destroyed;
unmanaged:not managed;
positive_width: new_width >= 0;
positive_height: new_height >= 0

ensure
dimensions_set: implementation.dimensions_set (new_width, new_height)

set_width (value: INTEGER)
-- Make value the new width.
-- widget must be unmanaged.

require
exists:not destroyed;
unmanaged:not managed;
positive_width: value >= 0

ensure
dimensions_set: implementation.dimensions_set (value, height)

set_x (value: INTEGER)
-- Put at horizontal position value relative

§2.1 WIDGETS 15

arg:

arg:
-- to parent.
require

exists:not destroyed;
unmanaged:not managed

ensure
x_set: implementation.x_set (value)

set_x_y (new_x: INTEGER; new_y: INTEGER)
-- Put at horizontal position new_x and at
-- vertical position new_y relative to parent.

require
exists:not destroyed;
unmanaged:not managed

ensure
x_y_set: implementation.position_set (new_x, new_y)

set_y (value: INTEGER)
-- Put at vertical position value relative
-- to parent.

require
exists:not destroyed;
unmanaged:not managed

ensure
y_set: implementation.y_set (x)

feature -- Event - command association

add_button_press_command (mouse_button: INTEGER; cmd: EV_COMMAND;
EV_ARGUMENT)

-- Add cmd to the list of commands to be executed
-- when button number ’mouse_button’ is pressed.

require
exists:not destroyed;
valid_command: cmd /= void

add_button_release_command (mouse_button: INTEGER; cmd: EV_COMMAND;
EV_ARGUMENT)

-- Add cmd to the list of commands to be executed
-- when button number ’mouse_button’ is released.

require
exists:not destroyed;
valid_command: cmd /= void

EIFFELVISION BASICS §2.116

arg:
add_destroy_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the widget is destroyed.

require
exists:not destroyed;
valid_command: cmd /= void

add_double_click_command (mouse_button: INTEGER; cmd: EV_COMMAND;
EV_ARGUMENT)

-- Add cmd to the list of commands to be executed
-- when button number mouse_button is double
-- clicked.

require
exists:not destroyed;
valid_command: cmd /= void

add_enter_notify_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the cursor of the mouse enter the widget.

require
exists:not destroyed;
valid_command: cmd /= void

add_expose_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the widget has to be redrawn because it was
-- exposed from behind another widget.

require
exists:not destroyed;
valid_command: cmd /= void

add_get_focus_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the widget get the focus.

require
exists:not destroyed;
valid_command: cmd /= void

add_key_press_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed when
-- Add cmd to the list of commands to be executed

§2.1 WIDGETS 17
-- when a key is pressed on the keyboard while the
-- widget has the focus.

require
exists:not destroyed;
valid_command: cmd /= void

add_key_release_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when a key is released on the keyboard while the
-- widget has the focus.

require
exists:not destroyed;
valid_command: cmd /= void

add_leave_notify_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the cursor of the mouse leave the widget.

require
exists:not destroyed;
valid_command: cmd /= void

add_loose_focus_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the widget loose the focus.

require
exists:not destroyed;
valid_command: cmd /= void

add_motion_notify_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when mouse move.

require
exists:not destroyed;
valid_command: cmd /= void

feature -- Event -- removing command association

remove_button_press_commands (mouse_button: INTEGER)
-- Empty the list of commands to be executed when
-- button number ’mouse_button’ is pressed.

require
exists:not destroyed

EIFFELVISION BASICS §2.118
remove_button_release_commands (mouse_button: INTEGER)
-- Empty the list of commands to be executed when
-- button number ’mouse_button’ is released.

require
exists:not destroyed

remove_destroy_commands
-- Empty the list of commands to be executed when
-- the widget is destroyed.

require
exists:not destroyed

remove_double_click_commands (mouse_button: INTEGER)
-- Empty the list of commands to be executed when
-- button number ’mouse_button’ is double clicked.

require
exists:not destroyed

remove_enter_notify_commands
-- Empty the list of commands to be executed when
-- the cursor of the mouse enter the widget.

require
exists:not destroyed

remove_expose_commands
-- Empty the list of commands to be executed when
-- the widget has to be redrawn because it was exposed from
-- behind another widget.

require
exists:not destroyed

remove_get_focus_commands
-- Empty the list of commands to be executed when
-- the widget get the focus.

require
exists:not destroyed

remove_key_press_commands
-- Empty the list of commands to be executed when
-- a key is pressed on the keyboard while the widget has the
-- focus.

§2.2 EVENTS 19
require
exists:not destroyed

remove_key_release_commands
-- Empty the list of commands to be executed when
-- a key is released on the keyboard while the widget has the
-- focus.

require
exists:not destroyed

remove_leave_notify_commands
-- Empty the list of commands to be executed when
-- the cursor of the mouse leave the widget.

require
exists:not destroyed

remove_loose_focus_commands
-- Empty the list of commands to be executed when
-- the widget loose the focus.

require
exists:not destroyed

remove_motion_notify_commands
-- Empty the list of commands to be executed when
-- the mouse move.

require
exists:not destroyed

end -- class EV_WIDGET

2.2 Events
There are two different types of events in EiffelVision :

• general events — common to all widgets.

• widget-specific events.

General Events

The following list describes the general events.

button press — a mouse button has been pressed over the widget.

button released — a mouse button has been released over the widget.

double click — a mouse button has been double clicked over the widget.

EIFFELVISION BASICS §2.320

is
motion notify — mouse pointer has been moved over the widget.

delete — the widget has been deleted.

expose — a part of the widget has been redrawn because it was exposed.

key press — a key has been pressed over the widget.

key release — a key has been released over the widget.

enter notify — the mouse pointer has entered the area of the widget.

leave notify — the mouse pointer has left the area of the widget.

Widget-specific events

As the name suggests, these events are specific to a given widget. For example, a
button click event thet occurs when the button widget is clicked.

2.3 Event Data
Event data is an object given as an argument of theexecuteprocedure of a command.
This information is specific to an event: for example, the location of the mouse
pointer. Widget specific events do not contain any event data. You will find different
types of event data:

EV_EVENT_DATA

indexing
description: "EiffelVision event data. Information given byEiffelVision when a callback

triggered.This is the base class for representing event data"
status: "See notice at end of class"
id: "$Id: ev_event_data.e,v 1.9 1999/03/12 20:10:54 aitkaci Exp $"
date: "$Date: 1999/03/12 20:10:54 $"
revision: "$Revision: 1.9 $"

class interface
EV_EVENT_DATA

creation
make

feature -- Access

widget: EV_WIDGET
-- The mouse pointer was over this widget
-- when event happened

feature -- Debug

§2.3 EVENT DATA 21
print_contents

end -- class EV_EVENT_DATA

EV_BUTTON_EVENT_DATA

This class represents event data for button events: button press, button release and
double click.

indexing
description: "EiffelVision button event data.Class for representing button event data"
status: "See notice at end of class"
id: "$Id: ev_button_event_data.e,v 1.7 1998/10/19 17:26:43 aitkaci Exp $"
date: "$Date: 1998/10/19 17:26:43 $"
revision: "$Revision: 1.7 $"

class interface
EV_BUTTON_EVENT_DATA

creation
make

feature -- Access

button: INTEGER

keyval: INTEGER

state: INTEGER

x: DOUBLE
-- x coordinate of mouse pointer

y: DOUBLE
-- y coordinate of mouse pointer

feature -- Debug

print_contents
-- print the contents of the object

end -- class EV_BUTTON_EVENT_DATA

EIFFELVISION BASICS §2.322
EV_MOTION_EVENT_DATA

This class represents event data for the mouse motion event.

indexing
description: "EiffelVision motion event data.Class for representing motion event data"
status: "See notice at end of class"
id: "$Id: ev_motion_event_data.e,v 1.6 1998/10/19 17:26:45 aitkaci Exp $"
date: "$Date: 1998/10/19 17:26:45 $"
revision: "$Revision: 1.6 $"

class interface
EV_MOTION_EVENT_DATA

creation
make

feature -- Initialization

make

feature -- Access

state: INTEGER

x: DOUBLE
-- x coordinate of mouse pointer

y: DOUBLE
-- y coordinate of mouse pointer

feature -- Debug

print_contents
-- print the contents of the object

end -- class EV_MOTION_EVENT_DATA

EV_KEY_EVENT_DATA

This class represents event data for the keyboard events : key press or key release.

indexing
description: "EiffelVision key event data.Class for representing button event data"

§2.4 COMMANDS 23

herit
status: "See notice at end of class"
id: "$Id: ev_key_event_data.e,v 1.2 1998/10/19 17:26:44 aitkaci Exp $"
date: "$Date: 1998/10/19 17:26:44 $"
revision: "$Revision: 1.2 $"

class interface
EV_KEY_EVENT_DATA

creation
make

feature -- Access

keyval: INTEGER

length: INTEGER

state: INTEGER

string: STRING

feature -- Debug

print_contents
-- print the contents of the object

end -- class EV_KEY_EVENT_DATA

2.4 Commands
You can add as many commands as necessary to an event — the commands execute
in the same order than they were added. The featureremove_?_commandsremoves
all commands attached to the given event. A featureremove_commandwill be
available to remove only one given command.

Class

indexing
description: "General notion of command (semantic unity).To write an actual command in

from thisclass and implement the ‘execute%’ feature"
status: "See notice at end of class"
date: "$Date: 1999/03/04 19:12:02 $"
revision: "$Revision: 1.6 $"

EIFFELVISION BASICS §2.524

wing
deferred class interface
EV_COMMAND

feature -- Basic operations

execute (args: EV_ARGUMENT; data: EV_EVENT_DATA)
-- Execute Current command.
-- args and data are automatically passed by
-- EiffelVision when Current command is
-- invoked as a callback.

end -- class EV_COMMAND

2.5 Undoable Command
An undoable command is a command that include an undoable mechanism.

Class

2.6 Routine Command
A routine command is a command created through an agent. This type of routines
can have severalexecutefunctions in the same class. However, the procedure that
creates the command must have the same signature that the execute function of a
command :

execute (arg: EV_ARGUMENT; data: EV_EVENT_DATA)

Class

indexing
" Routine notion of command. To create this kind of command any procedure with the follo

signature : execute (arg: EV_ARGUMENT; event_data: EV_EVENT_DATA) can be used."
status: "See notice at end of class"
date: "$Date: 1999/03/02 17:13:08 $"
revision: "$Revision: 1.1 $"

class interface
EV_ROUTINE_COMMAND

creation
make

feature -- Access

§2.7 ARGUMENTS 25

to a
procedure: PROCEDURE [ANY, TUPLE [EV_ARGUMENT, EV_EVENT_DATA]]

feature -- Basic operations

execute (args: EV_ARGUMENT; data: EV_EVENT_DATA)
-- Execute Current command.
-- args and data are automatically passed by
-- EiffelVision when Current command is
-- invoked as a callback.
-- Call the routine

end -- class EV_ROUTINE_COMMAND

2.7 Arguments
The executeprocedure of a command class ask for anEV_ARGUMENT in its
arguments. There are 4 kind of arguments implemented in EiffelVision, but any class
that inherits fromEV_ARGUMENT becomes an argument :

• One, two or three parameter arguments.

• Tuple arguments.

One, two or three parameters

For an argument with only one, two or three parameters, you can use the
EV_ARGUMENT1 , EV_ARGUMENT2 and EV_ARGUMENT3 types. You
create this type of argument by giving the data to store to the creation routinemake.
You can then retrieve the data using the featuresfirst, second andthird.

indexing
description: "EiffelVision EV_ARGUMENT2. To be used when passing two arguments

command."
status: "See notice at end of class"
id: "$Id: ev_argument2.e,v 1.3 1999/03/02 17:50:38 aitkaci Exp $"
date: "$Date: 1999/03/02 17:50:38 $"
revision: "$Revision: 1.3 $"

class interface
EV_ARGUMENT2 [G, H]

creation
make

feature -- Initialization

EIFFELVISION BASICS §2.826
make (first_element: G; second_element: H)
-- Create an argument with first_element and
-- second_element.

feature -- Access

second: H
-- Second element of the argument

end -- class EV_ARGUMENT2

Tuple arguments

The tuple argument type allows you to give more data. You can create an
EV_TUPLE_ARGUMENT by giving a tuple to the argument.

2.8 Timers
To be completed

2.9 Colors
X Windows System provides color map handling, so that the closest color is return.

2.10 Fonts
To be completed

3

Containers
A containeris a widget that allows other widgets, called itschildrento be put inside
the container. Some of the containers allow only one child, however, because the
child can also be a container, it is possible to put several widgets inside any container.

Usually container manages its children. This means that the size and position of
a child is specified by the container. The child can only specify its size and location
under the restrictions of the container. In a non-manager container, a widget freely
sets its position, size and minimum size, while in a manager container, a widget can
only set its minimum size. In this case, the container gives the position and size of
the widge. The attributesautomatic_position and automatic_resize of
EV_WIDGET control the behavior of the child inside the container.

Class

indexing
description: "EiffelVision container. Container is a widget that can hold children inside it"
status: "See notice at end of class"
id: "$Id: ev_container.e,v 1.9 1999/03/12 20:16:22 aitkaci Exp $"
date: "$Date: 1999/03/12 20:16:22 $"
revision: "$Revision: 1.9 $"

deferred class interface
EV_CONTAINER

feature -- Access

client_height: INTEGER
-- Height of the client area (area of the
-- widget excluding the borders etc) of
-- container

require
exists:not destroyed

CONTAINERS §3.128
ensure
positive_result: Result >= 0

client_width: INTEGER
-- Width of the client area (area of the
-- widget excluding the borders etc) of
-- container

require
exists:not destroyed

ensure
positive_result: Result >= 0

manager: BOOLEAN
-- Manager container manages the geometry of its
-- child(ren). Default True.

feature -- Basic operations

propagate_background_color
-- Propagate the current background color of the container
-- to the children.

require
exists:not destroyed

propagate_foreground_color
-- Propagate the current foreground color of the container
-- to the children.

require
exists:not destroyed

feature -- Implementation

implementation: EV_CONTAINER_I

end -- class EV_CONTAINER

3.1 EV_WINDOW
Basis for almost every application, the window is a basic GUI component that

consists of a bordered rectangular area visible on the screen.

§3.1 EV_WINDOW 29
Any widget, except for a window, can be put inside this container. A window is a
manager container that allows only one child.

Class

indexing
description: "EiffelVision window. Window is a visible window on the screen."
status: "See notice at end of class"
id: "$Id: ev_window.e,v 1.28 1999/03/12 20:16:29 aitkaci Exp $"
date: "$Date: 1999/03/12 20:16:29 $"
revision: "$Revision: 1.28 $"

class interface
EV_WINDOW

creation
make_top_level,
make

feature -- Access

icon_mask: EV_PIXMAP
-- Bitmap that could be used by window manager
-- to clip icon_pixmap bitmap to make the
-- icon nonrectangular

require
exists:not destroyed

icon_name: STRING
-- Short form of application name to be
-- displayed by the window manager when
-- application is iconified

CONTAINERS §3.130
require
exists:not destroyed

icon_pixmap: EV_PIXMAP
-- Bitmap that could be used by the window manager
-- as the application’s icon

require
exists:not destroyed

ensure
valid_result: Result /= void

maximum_height: INTEGER
-- Maximum height that application wishes widget
-- instance to have

require
exists:not destroyed

ensure
Result >= 0

maximum_width: INTEGER
-- Maximum width that application wishes widget
-- instance to have

require
exists:not destroyed

ensure
Result >= 0

parent: EV_WINDOW
-- The parent of the Current window: a window
-- If the widget is an EV_WINDOW without parent,
-- this attribute will be Void

title: STRING
-- Application name to be displayed by
-- the window manager

require
exists:not destroyed

widget_group: EV_WIDGET
-- Widget with wich current widget is associated.
-- By convention this widget is the "leader" of a group
-- widgets. Window manager will treat all widgets in

§3.1 EV_WINDOW 31
-- a group in some way; for example, it may move or
-- iconify them together

require
exists:not destroyed

feature -- Status report

is_iconic_state: BOOLEAN
-- Does application start in iconic state?

require
exists:not destroyed

feature -- Status setting

allow_resize
-- Allow the resize of the window.

require
exists:not destroyed

forbid_resize
-- Forbid the resize of the window.

require
exists:not destroyed

set_iconic_state
-- Set start state of the application
-- to be iconic.

require
exists:not destroyed

set_maximize_state
-- Set start state of the application to be
-- maximized.

require
exists:not destroyed

set_modal
-- Make the window modal

require
exists:not destroyed

set_normal_state

CONTAINERS §3.132
-- Set start state of the application to be normal.
require

exists:not destroyed

show
-- Make the window visible on the screen

require else
exists:not destroyed

feature -- Element change

set_icon_mask (pixmap: EV_PIXMAP)
-- Make pixmap the new icon mask.

require
exists:not destroyed;
valid_mask: is_valid (pixmap)

set_icon_name (txt: STRING)
-- Make txt the new icon name.

require
exists:not destroyed;
valid_name: txt /= void

set_icon_pixmap (pixmap: EV_PIXMAP)
-- Make pixmap the new icon pixmap.

require
exists:not destroyed;
valid_pixmap: is_valid (pixmap)

set_maximum_height (value: INTEGER)
-- Make value the new maximum_height.

require
exists:not destroyed;
large_enough: value >= 0

ensure
maximum_height_set: maximum_height = value

set_maximum_width (value: INTEGER)
-- Make value the new maximum_width.

require
exists:not destroyed;
large_enough: value >= 0

§3.1 EV_WINDOW 33
ensure
maximum_width_set: maximum_width = value

set_title (txt: STRING)
-- Make text the new title.

require
exists:not destroyed;
valid_title: txt /= void

set_widget_group (widget: EV_WIDGET)
-- Make Current part of the group of widget.

require
exists:not destroyed;
valid_widget: is_valid (widget)

feature -- Implementation

implementation: EV_WINDOW_I
-- Implementation of window
-- Depth_is_zero: depth = 0
-- Has_no_parent: parent = Void

feature -- Event - command association

add_close_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the window is closed.

require
exists:not destroyed;
valid_command: cmd /= void

add_move_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the widget is moved.

require
exists:not destroyed;
valid_command: cmd /= void

add_resize_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the window is resized.

require

CONTAINERS §3.234

: a
exists:not destroyed;
valid_command: cmd /= void

feature -- Event -- removing command association

remove_close_commands
-- Empty the list of commands to be executed
-- when the window is closed.

require
exists:not destroyed

remove_move_commands
-- Empty the list of commands to be executed
-- when the widget is resized.

require
exists:not destroyed

remove_resize_commands
-- Empty the list of commands to be executed
-- when the window is resized.

require
exists:not destroyed

end -- class EV_WINDOW

3.2 EV_DIALOG
Dialog is a special window that you can use for pop-up messages to the user and
other similar tasks.

Dialog contains two areas to which you can add widgets:

• action area — at the bottom of the dialog. It is usually the area where the
buttons are added.

• display area — on the top of the window, above the action area.

Class

indexing
description: "EiffelVision dialog. A dialog is a window with predefine containers and widgets

vertical box inside and a panel of button in the action-area (horizontal_box)."
status: "See notice at end of class"
id: "$Id: ev_dialog.e,v 1.8 1999/03/12 20:16:23 aitkaci Exp $"
date: "$Date: 1999/03/12 20:16:23 $"
revision: "$Revision: 1.8 $"

§3.3 EV_FIXED 35

ets
et."
class interface
EV_DIALOG

creation
make

feature -- Access

action_area: EV_HORIZONTAL_BOX
-- The action area on the bottom of the window

display_area: EV_VERTICAL_BOX
-- The display area on the top of the window

end -- class EV_DIALOG

3.3 EV_FIXED
Fixed is an invisible, non-manager container that can contain an unlimited number
of other widgets. The location of widgets inside a fixed widget is specified by the
coordinates (widget attributesx and y) relative to the top left corner of the fixed
widget.

Class

indexing
description: "EiffelVision fixed. Invisible container that allows unlimited number of other widg

to be put inside it. The location of each widget inside is specified by the coordinates of the widg
status: "See notice at end of class"
id: "$Id: ev_fixed.e,v 1.7 1999/03/12 20:16:24 aitkaci Exp $"
date: "$Date: 1999/03/12 20:16:24 $"
revision: "$Revision: 1.7 $"

class interface
EV_FIXED

creation
make

feature -- Access

manager: BOOLEAN

CONTAINERS §3.436

ts to
end -- class EV_FIXED

3.4 EV_BOX
A box is a manager that can receive an unlimited number of children, while class
EV_BOX is a deferred ancestor of bothEV_VERTICAL_BOX and
EV_HORIZONTAL_BOX .

By default a box ishomogeneouswhich means that parent gives equal amount of
space to each child. The actual value is determined by the size of the largest child in
the container.

Box can be set tonon-homogeneousby using the featureset_homogeneouswith
a parameterFalse. If the box isnon-homogeneous, each child has a space relative to
the minimum size of itself.

If a child has attributeexpandset toFalse, the container cannot allocate any extra
space to the children. The remaining space is distributed among the other children.

You can add a space between each child. This space is called spacing. By default,
the spacing is set to 0. You can change this value using the featureset_spacing.

Class

indexing
description: "EiffelVision box. Invisible container that allows unlimited number of other widge

be packed inside it. Box controls the location the children%’s location and size automatically."
status: "See notice at end of class"
id: "$Id: ev_box.e,v 1.11 1999/02/09 01:09:00 aitkaci Exp $"
date: "$Date: 1999/02/09 01:09:00 $"
revision: "$Revision: 1.11 $"

deferred class interface
EV_BOX

feature -- Access

border_width: INTEGER
-- Border width around container

require
exists:not destroyed

ensure
positive_result: Result >= 0

feature -- Element change (box specific)

§3.5 EV_VERTICAL_BOX 37
set_border_width (value: INTEGER)
-- Make value the new border width.

require
exist:not destroyed;
positive_value: value >= 0

ensure
border_set: border_width = value

set_homogeneous (flag: BOOLEAN)
-- Homogenous controls whether each object in
-- the box has the same size.

require
exist:not destroyed

set_spacing (value: INTEGER)
-- Spacing between the objects in the box

require
exist:not destroyed;
positive_value: value >= 0

end -- class EV_BOX

3.5 EV_VERTICAL_BOX
A vertical box packs the children in one column.

Class

indexing
description: "EiffelVision vertical box."
status: "See notice at end of class"
id: "$Id: ev_vertical_box.e,v 1.5 1999/03/12 20:16:28 aitkaci Exp $"
date: "$Date: 1999/03/12 20:16:28 $"
revision: "$Revision: 1.5 $"

class interface
EV_VERTICAL_BOX

CONTAINERS §3.638
creation
make

end -- class EV_VERTICAL_BOX

3.6 EV_HORIZONTAL_BOX
An horizontal box packs the children in one row.

Class

indexing
description: "EiffelVision horizontal box."
status: "See notice at end of class"
id: "$Id: ev_horizontal_box.e,v 1.6 1999/03/12 20:16:25 aitkaci Exp $"
date: "$Date: 1999/03/12 20:16:25 $"
revision: "$Revision: 1.6 $"

class interface
EV_HORIZONTAL_BOX

creation
make

end -- class EV_HORIZONTAL_BOX

3.7 EV_TABLE
A table is a manager container that can receive an unlimited number of children. A
table contains a grid of rows and columns where you can place the widgets. The
widgets can occupy as many spaces in the table as you want.

Thehomogeneousattribute of the table reffers to the size of the individual grid
square. Ifhomogeneousis set toTrue, the grid square resize to the size of the largest

§3.7 EV_TABLE 39

ets
widget in the table. Ifhomogeneousis set toFalse, the grid square size is determined
by the tallest widget in the same row, and the widest widget in the same column.

Rows and columns are laid out from 0 to n, where n is the last row or column. A
table layout with two rows and two columns is presented in Figure 3.7.1.

Figure 3.7.1Table layout with two rows and two columns

The coordinate system starts in the upper left hand corner.

Class

indexing
description: "EiffelVision table. Invisible container that allows unlimited number of other widg

to be packed inside it. A table controls the children%’s location and size automatically."
status: "See notice at end of class"
id: "$Id: ev_table.e,v 1.4 1999/03/12 20:16:27 aitkaci Exp $"
date: "$Date: 1999/03/12 20:16:27 $"
revision: "$Revision: 1.4 $"

class interface
EV_TABLE

creation
make

feature -- Status report

columns: INTEGER
-- Number of columns

require
exists:not destroyed

0 1 2

2

1

0

CONTAINERS §3.740
rows: INTEGER
-- Number of rows

require
exists:not destroyed

feature -- Status settings

set_child_position (the_child: EV_WIDGET; top, left, bottom, right: INTEGER)
-- Set the position and the size of the given child in
-- the table. top, left, bottom and right give the
-- zero-based coordinates of the child in the grid.
--
-- 0 1 2
-- 0 +----------+---------+
-- | | |
-- 1 +----------+---------+
-- | | |
-- 2 +----------+---------+
--
-- This feature must be called after the creation of
-- the child, otherwise, the child won’t appear in
-- the table.

require
exists:not destroyed;
the_child_not_void: the_child /= void;
bottom_larger_than_top: bottom > top;
right_larger_than_left: right > left

set_column_spacing (value: INTEGER)
-- Spacing between two columns of the table

require
exist:not destroyed;
positive_value: value >= 0

set_homogeneous (flag: BOOLEAN)
-- Homogenous controls whether each object in
-- the box has the same size.

require
exist:not destroyed

set_row_spacing (value: INTEGER)

§3.8 EV_DYNAMIC_TABLE 41

ther
size

f the
area
-- Spacing between two rows of the table
require

exist:not destroyed;
positive_value: value >= 0

end -- class EV_TABLE

3.8 EV_DYNAMIC_TABLE
A dynamic table is a table where all the children occupied only one cell and where
the placement of the children is done automaticaly. You can choose both the way the
table positions the children (horizontaly or verticaly) and the width of the table. For
example, in the following example, the table has arow_layout with a
finite_dimension set to 2.

Class

indexing
description: " EiffelVision dynamic table. Invisible container that allows unlimited number of o

widgets to be packed inside it. A dynamic table controls the children%’s location and
automatically."

note: " In this table, each child fill one cell. The user choose the way to lay the children out. I
children are laid in rows, the number of colums must be finite and the one of rows is infinite; if they
laid out in columns, it%’s the contrary."

note2: " By default, a dynamic table is the equivalent of an horizonatl box."
status: "See notice at end of class"
id: "$Id: ev_dynamic_table.e,v 1.3 1999/03/12 20:16:23 aitkaci Exp $"
date: "$Date: 1999/03/12 20:16:23 $"
revision: "$Revision: 1.3 $"

class interface
EV_DYNAMIC_TABLE

creation
make

feature -- Status report

CONTAINERS §3.942
is_row_layout: BOOLEAN

-- Are children laid out in rows?

-- False by default

require
exists:not destroyed

feature -- Status setting

set_column_layout

-- Lay the children out in columns.

require
exists:not destroyed

ensure
column_layout:not is_row_layout

set_finite_dimension (a_number: INTEGER)

-- Set number of columns if row

-- layout, or number of row if column

-- layout.

require
exists:not destroyed;

positive_number: a_number > 0

set_row_layout

-- Lay the children out in rows.

require
exists:not destroyed

ensure
row_layout: is_row_layout

end -- class EV_DYNAMIC_TABLE

3.9 EV_SCROLLABLE_AREA
A scrollable area is anon-managercontainer that can receive only one child and
displays as an area surrounded by horizontal and vertical scrollbars.

§3.10 EV_FRAME 43

ble
If the inside widget is bigger than the visible area, you can use the scrollbars to
scroll through the widget. The size of the scroll arrow corresponds to the visible size
of the widget (the size of the scrollable area), while the size of the scrollbar
corresponds to the size of the whole widget.

Class

indexing

description: "EiffelVision scrollable area. Scrollable area is a container with scrollbars. Scrolla
area offers automatic scrolling for its child."

status: "See notice at end of class"

id: "$Id: ev_scrollable_area.e,v 1.6 1999/03/12 20:16:27 aitkaci Exp $"

date: "$Date: 1999/03/12 20:16:27 $"

revision: "$Revision: 1.6 $"

class interface

EV_SCROLLABLE_AREA

creation

make

feature -- Access

manager: BOOLEAN

end -- class EV_SCROLLABLE_AREA

3.10 EV_FRAME
A frame is amanagercontainer that can receive only one child and displays as an
area surrounded by a rectangle. You can add a title to a frame which appears in the
top left corner of the rectangle.

CONTAINERS §3.1144

t on
Class

indexing
description: "EiffelVision frame. A frame is a container with a line around it. A label can be se

this line or not."
status: "See notice at end of class"
id: "$Id: ev_frame.e,v 1.3 1999/03/12 20:18:42 aitkaci Exp $"
date: "$Date: 1999/03/12 20:18:42 $"
revision: "$Revision: 1.3 $"

class interface
EV_FRAME

creation
make,
make_with_text

end -- class EV_FRAME

3.11 EV_SPLIT_AREA
A split area is a manager container that can receive only two children, which are
separated by a groove.

§3.12 EV_NOTEBOOK 45

n be
ective
You can control the relative size of the two children by physically moving the
groove.

EV_SPLIT_AREA is a deferred ancestor of both
EV_VERTICAL_SPLIT_AREA andEV_HORIZONTAL_SPLIT_AREA .

Class

indexing
description: "EiffelVision split area. Split consists of two parts divided by a groove, which ca

moved by the user to change the visible portion of the parts. Split is an abstract class with eff
decendants horizontal and vertical split."

status: "See notice at end of class"
id: "$Id: ev_split_area.e,v 1.4 1999/01/08 21:24:36 aitkaci Exp $"
date: "$Date: 1999/01/08 21:24:36 $"
revision: "$Revision: 1.4 $"

deferred class interface
EV_SPLIT_AREA

end -- class EV_SPLIT_AREA

3.12 EV_NOTEBOOK
A Notebook is a collection of pages that overlap each other, with a tab corresponding
to each page although only one of the pages is visible.

CONTAINERS §3.1246

r. For
The tabs display along the are top, bottom, left or right edge of the page. When
you click a tab, the corresponding page is made visible.

If there are a lot of tabs, it may not be possible to display all tabs. In this case,
you can set the number of visible tabs. If there are more tabs than visible tabs, scroll
buttons that you can use to control which of the tabs appear, display.

A notebook is a manager container that can receive an unlimited number of
children. However each page can receive only one child. Pages can be added to and
removed from the Notebook.

Class

indexing
description: "EiffelVision notebook. Notebook is a collection of pages that overlap each othe

each page there is a tab corresponding to the page."
status: "See notice at end of class"
id: "$Id: ev_notebook.e,v 1.10 1999/03/12 20:16:26 aitkaci Exp $"
date: "$Date: 1999/03/12 20:16:26 $"
revision: "$Revision: 1.10 $"

class interface
EV_NOTEBOOK

creation

§3.12 EV_NOTEBOOK 47
make

feature -- Status report

count: INTEGER
-- Number of pages in the notebook

current_page: INTEGER
-- Index of the page currently opened

feature -- Status setting

set_current_page (index: INTEGER)
-- Make the index-th page the currently opened page.

require
exists:not destroyed;
valid_index: index >= 1and index <= count

set_tab_bottom
-- Put the tabs at the bottom of the notebook.

require
exists:not destroyed

set_tab_left
-- Put the tabs at the left of the notebook.

require
exists:not destroyed

set_tab_right
-- Put the tabs at the right of the notebook.

require
exists:not destroyed

set_tab_top
-- Put the tabs at the top of the notebook.
-- default.

require
exists:not destroyed

feature -- Element change

append_page (c: EV_WIDGET; label: STRING)

CONTAINERS §3.1248
-- New page for notebook containing child ’c’ with tab

-- label ’label

require

exists:not destroyed;

child_of_notebook: c.parent = Current

set_page_title (index: INTEGER; str: STRING)

-- Set the label of the index page of the notebook.

-- The first page is the page number 1.

require

exists:not destroyed;

good_index: index <= count

feature -- Event - command association

add_switch_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)

-- Add ’cmd’ to the list of commands to be executed

-- the a page is switch in the notebook.

require

exists:not destroyed;

valid_command: cmd /= void

feature -- Event -- removing command association

remove_switch_commands

-- Empty the list of commands to be executed

-- when a page is switch in the notebook.

require

exists:not destroyed

end -- class EV_NOTEBOOK

4

Primitives
A primitive is a childless widget — other widgets cannot be placed inside it.
Nevertheless, some primitives can contain specific items as theEV_LIST or
EV_TREE.

indexing
description: "EiffelVision primitive. Deferred class, ancestor of many widgets"
status: "See notice at end of class"
id: "$Id: ev_primitive.e,v 1.4 1999/03/12 20:18:47 aitkaci Exp $"
date: "$Date: 1999/03/12 20:18:47 $"
revision: "$Revision: 1.4 $"

deferred class interface
EV_PRIMITIVE

end -- class EV_PRIMITIVE

4.1 EV_BUTTON
ClassEV_BUTTON is one of the most useful primitive. It is also a common
ancestor for different button classes.

A button acquires a 3D appearance as it is implemented by the underlying toolkit.

A button can contain a text, a pixmap, or both. When both are present, there are
two different presentation methods:

• pixmap on the top, label on the bottom,

• pixmap on the left and label on the right.

PRIMITIVES §4.250

ttons
Class

indexing
description: "EiffelVision button. Basic GUI push button. This is also a base class for other bu

classes"
status: "See notice at end of class"
id: "$Id: ev_button.e,v 1.16 1999/03/04 00:35:15 aitkaci Exp $"
date: "$Date: 1999/03/04 00:35:15 $"
revision: "$Revision: 1.16 $"

class interface
EV_BUTTON

creation
make,
make_with_text

feature -- Event - command association

add_click_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add ’cmd’ to the list of commands to be executed
-- the button is pressed.

require
exists:not destroyed;
valid_command: cmd /= void

feature -- Event -- removing command association

remove_click_commands
-- Empty the list of commands to be executed when
-- the button is pressed.

require
exists:not destroyed

end -- class EV_BUTTON

4.2 EV_TOGGLE_BUTTON
EV_TOGGLE_BUTTON is a descendant ofEV_BUTTON and is very similar,
except that it is always in one of two states, alternated by a click :

• deselected — then you can click on it and it will pop down,

§4.2 EV_TOGGLE_BUTTON 51

two
ackup.
• selected — then you can clicke on it again and it will pop back up.

Toggle buttons provide the basis for check buttons and radio buttons.
Consequently, radio and check buttons inherit many of the calls used for toggle
buttons.

The default state after creation isdeselected.

Class

indexing
description: "EiffelVision toggle button. It looks and acts like a button, but is always in one of

states,alternated by a click. Toggle button may bedepressed, and when clicked again, it will pop b
Click again, and it will pop back down."

status: "See notice at end of class"
id: "$Id: ev_toggle_button.e,v 1.14 1999/03/12 20:18:50 aitkaci Exp $"
date: "$Date: 1999/03/12 20:18:50 $"
revision: "$Revision: 1.14 $"

class interface
EV_TOGGLE_BUTTON

creation
make,
make_with_text

feature -- Status report

state: BOOLEAN
-- Is toggle pressed.

require
exists:not destroyed

feature -- Status setting

set_state (flag: BOOLEAN)
-- Set Current toggle on and set
-- pressed to True.

require
exists:not destroyed

PRIMITIVES §4.352
ensure
correct_state: state = flag

toggle
-- Change the state of the toggel button to
-- opposite

require
exists:not destroyed

ensure
state_is_true: state =not old state

feature -- Event - command association

add_toggle_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add ’cmd’ to the list of commands to be executed
-- when the button is toggled.

require
exists:not destroyed;
valid_command: cmd /= void

feature -- Event -- removing command association

remove_toggle_commands
-- Empty the list of commands to be executed
-- when the button is toggled.

require
exists:not destroyed

end -- class EV_TOGGLE_BUTTON

4.3 EV_CHECK_BUTTON
Check buttons are similar to toggle buttons. Rather than being buttons with a label
and/or a pixmap inside them, they look like check buttons on the underlying toolkit
that contains usually a name preceded by a check mark or bullet that turns on or off
each time the user click on it.

§4.4 EV_RADIO_BUTTON 53

that
Class

indexing
description: "EiffelVision Check button. Widget that has a check box and a text."
status: "See notice at end of class"
id: "$Id: ev_check_button.e,v 1.8 1999/03/26 04:53:28 aitkaci Exp $"
date: "$Date: 1999/03/26 04:53:28 $"
revision: "$Revision: 1.8 $"

class interface
EV_CHECK_BUTTON

creation
make,
make_with_text

end -- class EV_CHECK_BUTTON

4.4 EV_RADIO_BUTTON
Radio buttons are similar to check buttons except that radio buttons are grouped and
only one item can be selected at a time.

Radio buttons that have the same parent belong to the same group. However, it is
possible to have several radio button groups inside the same parent : for example, a
window. This is not a problem since you can use special containers to group radio
buttons. For example, a vertical-box inside anEV_FRAME is a good component to
group radio buttons, because it also groups the buttons visually inside a border.

Class

indexing
description: "EiffelVision radio button. Radio buttons aresimilar to check buttons except

radiobuttons are grouped so that only one may beselected at a time."
status: "See notice at end of class"
id: "$Id: ev_radio_button.e,v 1.6 1999/03/26 04:53:50 aitkaci Exp $"
date: "$Date: 1999/03/26 04:53:50 $"
revision: "$Revision: 1.6 $"

PRIMITIVES §4.554

k on
class interface
EV_RADIO_BUTTON

creation
make,
make_with_text

feature -- Initialization

make (par: EV_CONTAINER)
-- radio button with par as parent.

make_with_text (par: EV_CONTAINER; txt: STRING)
-- radio button with par as parent and txt as
-- text label

end -- class EV_RADIO_BUTTON

4.5 EV_OPTION_BUTTON
EV_OPTION_BUTTON is a descendant ofEV_BUTTON . When you click an
option button, a pop-op menu appears, and the item you select displays as the text of
the button.

Only one menu can be added in an option button at a time.

Class

indexing
description: "EiffelVision option button is a button that displays a popup_menu when we clic

it."
id: "$Id: ev_option_button.e,v 1.5 1999/03/26 01:35:35 aitkaci Exp $"
date: "$Date: 1999/03/26 01:35:35 $"
revision: "$Revision: 1.5 $"

class interface
EV_OPTION_BUTTON

creation

§4.6 EV_LABEL 55

d text
make

end -- class EV_OPTION_BUTTON

4.6 EV_LABEL
A label is a static text that you can place anywhere in a window. For example, as an
explanation next to a text field.

Class

indexing
description: "EiffelVision label"
status: "See notice at end of class"
id: "$Id: ev_label.e,v 1.13 1999/03/12 20:18:43 aitkaci Exp $"
date: "$Date: 1999/03/12 20:18:43 $"
revision: "$Revision: 1.13 $"

class interface
EV_LABEL

creation
make,
make_with_text

end -- class EV_LABEL

4.7 EV_TEXT_COMPONENT
EV_TEXT_COMPONENT is a deferred ancestor of theEV_TEXT_AREA and
EV_TEXT_FIELD . It contains several text management tools, including cutting,
copying or pasting text.

Class

indexing
description: "EiffelVision text component. Common ancestor for text classes liketext field an

area."
status: "See notice at end of class"
id: "$Id: ev_text_component.e,v 1.8 1999/03/22 16:37:10 aitkaci Exp $"

PRIMITIVES §4.756
date: "$Date: 1999/03/22 16:37:10 $"
revision: "$Revision: 1.8 $"

deferred class interface
EV_TEXT_COMPONENT

feature -- Access

text: STRING
-- Text in component

require
exists:not destroyed

text_length: INTEGER
-- Length of the text in the widget

require
exists:not destroyed

feature -- Status report

has_selection: BOOLEAN
-- Is something selected?

require
exist:not destroyed

position: INTEGER
-- Current position of the caret.

require
exist:not destroyed

selection_end: INTEGER
-- Index of the last character selected

require
exist:not destroyed;
has_selection: has_selection

ensure
result_large_enough: Result >= 0;
result_small_enough: Result <= text_length

selection_start: INTEGER
-- Index of the first character selected

require

§4.7 EV_TEXT_COMPONENT 57
exist:not destroyed;
has_selection: has_selection

ensure
result_large_enough: Result >= 0;
result_small_enough: Result <= text_length

feature -- Status setting

set_editable (flag: BOOLEAN)
-- flag true make the component read-write and
-- flag false make the component read-only.

require
exists:not destroyed

set_maximum_text_length (value: INTEGER)
-- Make value the new maximal lenght of the text
-- in characte number.

require
exist:not destroyed;
valid_length: value >= 0

set_position (pos: INTEGER)
-- Set current insertion position.

require
exist:not destroyed;
valid_pos: pos > 0and pos <= text_length

feature -- Element change

append_text (txt: STRING)
-- Append txt into component.

require
exist:not destroyed;
not_void: txt /= void

prepend_text (txt: STRING)
-- Prepend txt into component.

require
exist:not destroyed;
not_void: txt /= void

set_text (txt: STRING)

PRIMITIVES §4.758
-- Make txt the new text.
require

exists:not destroyed;
not_void: txt /= void

ensure
text_set: text.is_equal (txt)

feature -- Resizing

set_minimum_width_in_characters (nb: INTEGER)
-- Make nb characters visible on one line.

require
exists:not destroyed;
valid_nb: nb > 0

feature -- Basic operation

copy_selection
-- Copy the selected_region in the Clipboard
-- to paste it later.
-- If the selected_region is empty, it does
-- nothing.

require
exists:not destroyed;
has_selection: has_selection

cut_selection
-- Cut the selected_region by erasing it from
-- the text and putting it in the Clipboard
-- to paste it later.
-- If the selectd_region is empty, it does
-- nothing.

require
exists:not destroyed;
has_selection: has_selection

delete_selection
-- Delete the current selection.

require
exist:not destroyed;
has_selection: has_selection

ensure

§4.7 EV_TEXT_COMPONENT 59
has_no_selection:not has_selection

deselect_all
-- Unselect the current selection.

require
exist:not destroyed;
has_selection: has_selection

ensure
has_no_selection:not has_selection

paste (index: INTEGER)
-- Insert the string which is in the
-- Clipboard at the index postion in the
-- text.
-- If the Clipboard is empty, it does nothing.

require
exists:not destroyed

select_all
-- Select all the text.

require
exist:not destroyed;
positive_length: text_length > 0

ensure
has_selection: has_selection;
selection_start_set: selection_start = 0;
selection_end_set: selection_end <= text_length + 2

select_region (start_pos, end_pos: INTEGER)
-- Select (hilight) the text between
-- start_pos and end_pos

require
exist:not destroyed;
valid_start: start_pos > 0and start_pos <= text_length;
valid_end: end_pos > 0and end_pos <= text_length

ensure
has_selection: has_selection;
selection_start_set: selection_start = start_pos;
selection_end_set: selection_end = end_pos

feature -- Event - command association

PRIMITIVES §4.860
add_change_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add ’cmd’ to the list of commands to be executed
-- when the text of the widget have changed.

require
exists:not destroyed;
valid_command: cmd /= void

feature -- Event -- removing command association

remove_change_commands
-- Empty the list of commands to be executed
-- when the text of the widget have changed.

require
exists:not destroyed

end -- class EV_TEXT_COMPONENT

4.8 EV_TEXT_FIELD
A text field accepts a single line of enterd text.

The text can contain alphanumeric and numeric characters as well as special
characters (what? Unicode? iso8851-1?), but there is no formatting for the text. You
can choose the maximum length of the text accepted.

Sometimes it is necessary to check the validity of entered text. The following is a
suggestion for the validity checking:

Offer a classEV_TEXT_FILTER with a redefineable featurefilter (char:
CHARACTER): BOOLEAN. filter returnsTrue, if the character is valid. Another
creation procedure forEV_TEXT_FIELD also needs to be added:make_with_filter
(filter: EV_TEXT_FILTER).This is not yet very effective. A more efficient solution
is to create the filter object, using a regular expression to describe the validity of the
input

Class

indexing
description: "EiffelVision text field. To query single line of text from the user"
status: "See notice at end of class"
id: "$Id: ev_text_field.e,v 1.12 1999/03/22 16:55:45 aitkaci Exp $"
date: "$Date: 1999/03/22 16:55:45 $"
revision: "$Revision: 1.12 $"

§4.9 EV_PASSWORD_FIELD 61

er."
class interface
EV_TEXT_FIELD

creation
make,
make_with_text

feature -- Event - command association

add_activate_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add ’cmd’ to the list of commands to be executed
-- when the text field is activated, ie when the user
-- press the enter key.

require
exists:not destroyed;
valid_command: cmd /= void

feature -- Event -- removing command association

remove_activate_commands
-- Empty the list of commands to be executed
-- when the text field is activated, ie when the user
-- press the enter key.

require
exists:not destroyed

end -- class EV_TEXT_FIELD

4.9 EV_PASSWORD_FIELD
A password field is a text field that ask for a password in an application. The text
typed into the password entry does not display, rather a certain character substitutes
for the typed character. An asterix (*) is the substituted characher, by default.

Class

indexing
description: "EiffelVision password field. A text field That displays always the same charact

PRIMITIVES §4.1062
status: "See notice at end of class"

date: "$Date: 1999/02/18 23:30:46 $"

revision: "$Revision: 1.2 $"

class interface

EV_PASSWORD_FIELD

creation

make

feature -- Access

character: CHARACTER

-- Displayed character instead of the text.

require

exists:not destroyed

feature -- Element change

set_character (char: CHARACTER)

-- Make char the new character displayed in the

-- password field.

require

exists:not destroyed

end -- class EV_PASSWORD_FIELD

4.10 EV_SPINBUTTON

Spinbuttons are single line entries that have two small arrow buttons along the right
edge of the text field. Spinbutton can only contain numeric values. When you click
the arrow buttons, the value of the entry decreases or increases, depending on the
button you click.

4.11 EV_COMBO_BOX

A combo box contains a text field, a button and a list.

§4.11 EV_COMBO_BOX 63

n the

t field
When you click the button, a list of choices displays. You can either type a value
in the text field or select one from the list. A combo-box can be editable or not. When
it is not editable, you can click any where in the combo-box to show the list.

Class

indexing
description: "EiffelVision Combo-box. A combo-box contains a text field and a button. Whe

button is pressed, a list of possible choices is opened."
note: "The ‘height%’ of a combo-box is the one of the text field. To have the height of the tex

plus the list, use extended_height."
status: "See notice at end of class"
names: widget
date: "$Date: 1999/01/27 00:44:26 $"
revision: "$Revision: 1.14 $"

class interface
EV_COMBO_BOX

creation
make

feature -- Measurement

extended_height: INTEGER
-- height of the combo-box when the children are
-- visible.

require
exists:not destroyed

feature -- Implementation

implementation: EV_COMBO_BOX_I

end -- class EV_COMBO_BOX

PRIMITIVES §4.1264
4.12 EV_TEXT_AREA
A text area is a text field that accepts multiple lines. Therefore, all the words have

the same font, size and color.

The property maximum length controls the number of characters in the entire
text. A text area has two creation routines : with or without scrollbars.

Class

indexing
description: "EiffelVision text area. To query multiple lines of text from the user"
status: "See notice at end of class"
id: "$Id: ev_text_area.e,v 1.2 1999/01/08 21:23:26 aitkaci Exp $"
date: "$Date: 1999/01/08 21:23:26 $"
revision: "$Revision: 1.2 $"

class interface
EV_TEXT_AREA

creation
make

end -- class EV_TEXT_AREA

4.13 EV_TEXT_EDITOR
A text editor is a complete multi-line text widget that contains editing features
including multiple colos and fonts for the text.

4.14 EV_SEPARATOR
Separators are simple widgets that display one or several lines. They are used to
separate two areas on the screen. Separators are usually used in menus, but can be
used in other widgets too. The relevant features areset_double_dashed_line,
set_double_line, set_no_line, set_single_dashed_line, andset_single_line.

EV_SEPARATOR is a deferred of bothEV_VERTICAL_SEPARATOR and
EV_HORIZONTAL_SEPARATOR .

§4.15 EV_RANGE 65
Class

indexing
description: "EiffelVision separator."
status: "See notice at end of class"
date: "$Date: 1999/01/27 00:46:06 $"
revision: "$Revision: 1.3 $"

deferred class interface
EV_SEPARATOR

end -- class EV_SEPARATOR

4.15 EV_RANGE
EV_RANGE is a deferred class and a common ancestor forEV_SCROLLBAR
andEV_SCALE.

4.16 EV_SCROLLBAR
A scrollbar is a simple concept. It contains a scroll box that indicates the relative
position within the scrollable material (or position within the scrollbar) and scroll
arrows at either end for movement. You can drag the scroll box to a new position,
click a scroll arrow to movethe scroll box on line unit or click in the scroll bar to
move the scroll box one page unit. You can set the line and page unit.

Scrollbars can be used indidividually to specify relative values, such as sliders on
a hi-fi system, but are usually attached to something else.

EV_SCROLLBAR is a deferred ancestor of both
EV_HORIZONTAL_SCROLLBAR andEV_VERTICAL_SCROLLBAR .

Events that can occur on a scrollbar include the movement of the scroll box and
the position being changed.

Depending on the toolkit, it is possible to increase the scroll box speed. Speed is
set by aninitial_delayand arepeat_delay(set_inital_delayandset_repeat_delay).
Also affecting movement is thegranularity, which affects how much the scroll bar
will move as well as themaximumandminimumvalues for the range of movement.
The routines to set the movement values areset_granularity, set_maximumand
set_minimum.

4.17 EV_SCALE
A scale can be considered as a scrollbar with a label. Unlike a scrollbar, the value of
the label on the scale represents a numeric value you set.

EV_SCALE is a deferred ancestor of bothEV_HORIZONTAL_SCALE and
EV_VERTICAL_SCALE .

PRIMITIVES §4.1866
Like a scrollbar, a scale has amoveevent and avalue_changedevent. The
granularity, minimum, maximum, scroll boxandorientationvalues have the same
meanings and associated routines asEV_SCROLLBAR .

The major difference between a scrollbar and the scale is the output modes of the
scale. You can set the scale to only output values (set_output_only) and then query
(is_output_only). The label display using theset_textfeature and queried using the
text feature. The numerical value of the scale displays by settingis_value_shown
through theshow_value feature.

By default, the maximum of the scale is the lower-left corner for the vertical
scales and the lower-right corner for the horizontal ones. However, you can change
the default behavior by usingset_maximum_right_bottomand query the value using
is_maximum_right_bottom.

4.18 EV_LIST
A list contains a selectable list of options. You can allow one or more selections.
Inside the list, you can add someEV_LIST_ITEM.

Class

indexing
description: "EiffelVision list. Contains a list of items from which the user can select."
status: "See notice at end of class"
id: "$$"
date: "$Date: 1999/03/04 00:35:16 $"
revision: "$Revision: 1.15 $"

class interface
EV_LIST

creation
make

feature -- Access

count: INTEGER
-- Number of rows

require
exists:not destroyed

get_item (index: INTEGER): EV_LIST_ITEM
-- Give the item of the list at the zero-base
-- index.

require

§4.18 EV_LIST 67
exists:not destroyed;
item_exists: index <= count

selected_item: EV_LIST_ITEM
-- Item which is currently selected
-- It needs to be in single selection mode

require
exists:not destroyed;
single_selection:not is_multiple_selection

selected_items: LINKED_LIST [EV_LIST_ITEM]
-- List of all the selected items. For a single
-- selection list, it gives a list with only one
-- element which is selected_item. Therefore, one
-- should use selected_item rather than
-- selected_items for a single selection list

require
exists:not destroyed

feature -- Status report

is_multiple_selection: BOOLEAN
-- True if the user can choose several items
-- False otherwise

require
exist:not destroyed

selected: BOOLEAN
-- Is at least one item selected ?

require
exists:not destroyed

feature -- Status setting

select_item (index: INTEGER)
-- Select an item at the one-based index the list.

require
exists:not destroyed;
index_large_enough: index > 0;
index_small_enough: index <= count

set_multiple_selection

PRIMITIVES §4.1968
-- Allow the user to do a multiple selection simply
-- by clicking on several choices.

require
exists:not destroyed

set_single_selection
-- Allow the user to do only one selection. It is the
-- default status of the list

require
exists:not destroyed

feature -- Element change

clear_items
-- Clear all the items of the list.

require
exists:not destroyed

feature -- Event -- removing command association

remove_selection_commands
-- Empty the list of commands to be executed
-- when the selection has changed.

require
exists:not destroyed

feature -- Event : command association

add_selection_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the selection has changed.

require
exists:not destroyed;
valid_command: cmd /= void

end -- class EV_LIST

4.19 EV_MULTI_COLUMN_LIST
A multi-column list contains the functionalities of a list with the difference that its
components are of typeEV_MULTI_COLUMN_LIST_ROW . A multi-column
list row consists of several parts, with each part in the list represented by the item in
one column. A multi-column list also has a title row, which displays above the list.

§4.19 EV_MULTI_COLUMN_LIST 69

can

t also
The title row controls which columns are visible and the size of the columns.

Class

indexing
description: "EiffelVision multi-column-list. Contains a list of items from which the user

select."
note: "The list start at the index 1, the titles are not count amongthe rows. The columns star

at the index 1."
status: "See notice at end of class"
id: "$$"
date: "$Date: 1999/03/04 00:35:16 $"
revision: "$Revision: 1.11 $"

class interface
EV_MULTI_COLUMN_LIST

creation
make_with_size

feature -- Access

columns: INTEGER
-- Number of columns in the list.

require
exists:not destroyed

get_item (index: INTEGER): EV_MULTI_COLUMN_LIST_ROW
-- Give the item of the list at the one-base
-- index.

require
exists:not destroyed;
item_exists: index <= rows

rows: INTEGER
-- Number of rows

require

PRIMITIVES §4.1970
exists:not destroyed

selected_item: EV_MULTI_COLUMN_LIST_ROW
-- Item which is currently selected, for a multiple
-- selection, it gives the last selected item.

require
exists:not destroyed;
single_selection:not is_multiple_selection

selected_items: LINKED_LIST [EV_MULTI_COLUMN_LIST_ROW]
-- List of all the selected items. For a single
-- selection list, it gives a list with only one
-- element which is selected_item. Therefore, one
-- should use selected_item rather than
-- selected_items for a single selection list

require
exists:not destroyed

feature -- Status report

is_multiple_selection: BOOLEAN
-- True if the user can choose several items
-- False otherwise

require
exist:not destroyed

selected: BOOLEAN
-- Is at least one item selected ?

require
exists:not destroyed

feature -- Status setting

hide_title_row
-- Hide the row of the titles.

require
exists:not destroyed

set_center_alignment (column: INTEGER)
-- Align the text of the column at left.
-- Cannot be used for the first column which is
-- always left aligned.

§4.19 EV_MULTI_COLUMN_LIST 71
require
exists:not destroyed;
column_exists: column > 1and column <= columns

set_left_alignment (column: INTEGER)
-- Align the text of the column at left.
-- Cannot be used for the first column which is
-- always left aligned.

require
exists:not destroyed;
column_exists: column > 1and column <= columns

set_multiple_selection
-- Allow the user to do a multiple selection simply
-- by clicking on several choices.

require
exists:not destroyed

set_right_alignment (column: INTEGER)
-- Align the text of the column at left.
-- Cannot be used for the first column which is
-- always left aligned.

require
exists:not destroyed;
column_exists: column > 1and column <= columns

set_single_selection
-- Allow the user to do only one selection. It is the
-- default status of the list

require
exists:not destroyed

show_title_row
-- Show the row of the titles.

require
exists:not destroyed

feature -- Element change

clear_items
-- Clear all the items of the list.

require

PRIMITIVES §4.1972
exists:not destroyed

set_column_title (txt: STRING; column: INTEGER)
-- Make txt the title of the one-based column.

require
exists:not destroyed;
column_exists: column >= 1and column <= columns

set_column_width (value: INTEGER; column: INTEGER)
-- Make value the new width of the one-based column.

require
exists:not destroyed;
column_exists: column >= 1and column <= columns

set_rows_height (value: INTEGER)
-- Makevalue the new height of all the rows.

require
exists:not destroyed

feature -- Event -- removing command association

remove_column_click_commands
-- Empty the list of commands to be executed
-- when a column is clicked.

require
exists:not destroyed

remove_selection_commands
-- Empty the list of commands to be executed
-- when the selection has changed.

require
exists:not destroyed

feature -- Event : command association

add_column_click_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when a column is clicked.

require
exists:not destroyed;
valid_command: cmd /= void

§4.20 EV_TREE 73
add_selection_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the selection has changed.

require
exists:not destroyed;
valid_command: cmd /= void

end -- class EV_MULTI_COLUMN_LIST

4.20 EV_TREE
A tree is a structure that represents data hierarchically. Each data item in a tree is of
typeEV_TREE_ITEM .

You can add a tree item directly to the tree, making it a root item, or to another
item, that becomes a sub-tree item. A tree will have options that control the display
: with lines, dashes, nothing...

Class

indexing
description: "EiffelVision tree. A tree show a hierarchy with several levels of items."
status: "See notice at end of class"
id: "$$"
date: "$Date: 1999/03/04 19:14:17 $"
revision: "$Revision: 1.6 $"

class interface
EV_TREE

creation
make

feature -- Event -- removing command association

remove_selection_commands

PRIMITIVES §4.2174
-- Empty the list of commands to be executed

-- when the selection has changed.

require

exists:not destroyed

feature -- Event : command association

add_selection_command (a_command: EV_COMMAND; arguments: EV_ARGUMENT)

-- Add cmd to the list of commands to be executed

-- when an item is selected.

require

exists:not destroyed

end -- class EV_TREE

4.21 EV_PROGRESS_BAR

A progressbar is a control that displays the percentage of a particular process that has
been complted, such as compilation. You can only set the level of the bar, you can
not query the status.

EV_PROGRESS_BAR is a deferred ancestor of both
EV_VERTICAL_PROGRESS_BAR andEV_HORIZONTAL_PROGRESS_BAR.

Class

4.22 EV_DRAWING_AREA

A drawing area is a widget on which you can draw. However, the area does not
automatically refresh itself. You must use anexposeevent to redraw the drawing area
when necessary.

If you want the drawing area to redraw itself automatically, you must attach a pixmap
to the drawing area and draw on this pixmap. The pixmap is then copied to the
drawing area automaticaly, when necessary.

5

Items
n%’t
Items are specific elements that you can add to certain widgets. To add an item to a
widget, you must make the widget the parent of the item. An item can have a parent
Void. Each type of item corresponds to a particular type of widget that accepts them,
for example, you can add anEV_TREE_ITEM only to anEV_TREE.

An Item contains uselly a label and a pixmap. An item will also have a data attribute
that you can set.

In the current implementation, it has no effect to attach a pixmap to an item.

Class

indexing
description: "EiffelVision item. Top class of menu_item, list_item and tree_item. This item is

a widget, because most of the features of the widgets are inapplicable here."
status: "See notice at end of class"
id: "$$"
date: "$Date: 1999/03/15 22:54:04 $"
revision: "$Revision: 1.11 $"

deferred class interface
EV_ITEM

feature -- Access

parent_widget: EV_WIDGET
-- Parent widget of the current item

require
exists:not destroyed

text: STRING
-- Current label of the item

require

ITEMS §76
exists:not destroyed

feature -- Element change

set_text (txt: STRING)
-- Make txt the new label of the item.

require
exists:not destroyed;
valid_text: txt /= void

ensure
text_set: text.is_equal (txt)

feature -- Implementation

implementation: EV_ITEM_I

feature -- Event -- removing command association

remove_activate_commands
-- Empty the list of commands to be executed when
-- the item is activated.

require
exists:not destroyed

remove_deactivate_commands
-- Empty the list of commands to be executed when
-- the item is deactivated.

require
exists:not destroyed

feature -- Event : command association

add_activate_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the item is activated.

require
exists:not destroyed;
valid_command: cmd /= void

add_deactivate_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the item is unactivated.

§5.1 EV_LIST_ITEM 77
require
exists:not destroyed;
valid_command: cmd /= void

end -- class EV_ITEM

5.1 EV_LIST_ITEM
The parent of a list item can be either an EV_LIST or anEV_COMBO_BOX .

In the future implementation, the pixmap should be visible.

indexing
description: "EiffelVision list item. This items are used in the lists."
status: "See notice at end of class"
id: "$$"
date: "$Date: 1999/03/15 22:55:23 $"
revision: "$Revision: 1.11 $"

class interface
EV_LIST_ITEM

creation
make,
make_with_text,
make_with_pixmap,
make_with_all

feature -- Access

parent: EV_LIST
-- Parent of the current item.

require
exists:not destroyed

feature -- Status report

index: INTEGER
-- Index of the current item.

require
exists:not destroyed

is_first: BOOLEAN

ITEMS §5.178
-- Is the item first in the list ?
require

exists:not destroyed

is_last: BOOLEAN
-- Is the item last in the list ?

require
exists:not destroyed

is_selected: BOOLEAN
-- Is the item selected ?

require
exists:not destroyed

feature -- Status setting

set_selected (flag: BOOLEAN)
-- Select the item if flag, unselect it otherwise.

require
exists:not destroyed

toggle
-- Change the state of selection of the item.

require
exists:not destroyed

feature -- Element change

set_parent (par: EV_LIST)
-- Make par the new parent of the widget.
-- par can be Void then the parent is the screen.

require
exists:not destroyed

ensure
parent_set: parent = par

feature -- Implementation

implementation: EV_LIST_ITEM_I

feature -- Event -- removing command association

§5.2 EV_TREE_ITEM 79

item
tree."
remove_double_click_commands
-- Empty the list of commands to be executed when
-- the item is double-clicked.

require
exists:not destroyed

feature -- Event : command association

add_double_click_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add ’cmd’ to the list of commands to be executed
-- when the item is double clicked.

require
exists:not destroyed;
valid_command: cmd /= void

end -- class EV_LIST_ITEM

5.2 EV_TREE_ITEM
The parent of a tree item can be either anEV_TREE or anEV_TREE_ITEM . If
the parent of the item is a tree, then it is a root item of the tree. If it is created with
an item as a parent, then the item becomes a sub-tree item.

Class

indexing
description: "EiffelVision tree item. Item that can be put in a tree. A tree item is also a tree-

container because if we create a tree-item with a tree-item as parent, the parent will become a sub
status: "See notice at end of class"
id: "$$"
date: "$Date: 1999/03/26 01:34:43 $"
revision: "$Revision: 1.10 $"

class interface
EV_TREE_ITEM

creation
make,
make_with_text,
make_with_pixmap,
make_with_all

feature -- Access

ITEMS §5.280
parent: EV_TREE_ITEM_HOLDER
-- Parent of the current item.

require
exists:not destroyed

feature -- Status report

is_expanded: BOOLEAN
-- is the item expanded?

require
exists:not destroyed

is_selected: BOOLEAN
-- Is the item selected?

require
exists:not destroyed

feature -- Element change

set_parent (par: EV_TREE_ITEM_HOLDER)
-- Make par the new parent of the widget.
-- par can be Void then the parent is the screen.

require
exists:not destroyed

ensure
parent_set: parent = par

feature -- Event -- removing command association

remove_subtree_commands
-- Empty the list of commands to be executed when
-- the selection subtree is expanded or collapsed.

require
exists:not destroyed

feature -- Event : command association

add_subtree_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the selection subtree is expanded or collapsed.

require
exists:not destroyed;

§5.3 EV_MENU_ITEM 81

R."
valid_command: cmd /= void

end -- class EV_TREE_ITEM

5.3 EV_MENU_ITEM
The parent of a menu item can be either anEV_MENU or anEV_MENU_ITEM . The
parent of a menu-item should not be a check or a radio menu item, just a simple item. If
you add a menu item to another menu item, the receiver item becomes a sub-menu.

Class

indexing
description: "EiffelVision menu item. Item that must be put in an EV_MENU_ITEM_HOLDE
status: "See notice at end of class"
id: "$Id: ev_menu_item.e,v 1.16 1999/03/26 01:34:42 aitkaci Exp $"
date: "$Date: 1999/03/26 01:34:42 $"
revision: "$Revision: 1.16 $"

class interface
EV_MENU_ITEM

creation
make,
make_with_text,
make_with_pixmap,
make_with_all

feature -- Access

parent: EV_MENU_ITEM_HOLDER
-- Parent of the current item.

require
exists:not destroyed

feature -- Status report

insensitive: BOOLEAN
-- Is current item insensitive to
-- user actions?

require
exists:not destroyed

feature -- Status setting

ITEMS §5.482

an
set_insensitive (flag: BOOLEAN)
-- Set current item in insensitive mode if
-- flag.

require
exists:not destroyed

ensure
flag = insensitive

feature -- Element change

set_parent (par: EV_MENU_ITEM_HOLDER)
-- Make par the new parent of the widget.
-- par can be Void then the parent is the screen.

require
exists:not destroyed

feature -- Implementation

implementation: EV_MENU_ITEM_I

end -- class EV_MENU_ITEM

5.4 EV_CHECK_MENU_ITEM
A check menu item is a menu item with two possible states :

• selected,

• cleared.

Class

indexing
description: "EiffelVision check menu item. Item that must be put in

EV_MENU_ITEM_HOLDER. It has two states : check and unchecked."
status: "See notice at end of class"
id: "$Id: ev_check_menu_item.e,v 1.6 1999/03/26 01:34:40 aitkaci Exp $"
date: "$Date: 1999/03/26 01:34:40 $"
revision: "$Revision: 1.6 $"

class interface
EV_CHECK_MENU_ITEM

§5.5 EV_RADIO_MENU_ITEM 83
creation
make,
make_with_text

feature -- Status report

state: BOOLEAN
-- Is current menu-item checked ?.

require
exists:not destroyed

feature -- Status setting

set_state (flag: BOOLEAN)
-- Make flag the new state of the menu-item.

require
exists:not destroyed

ensure
correct_state: state = flag

toggle
-- Change the state of the menu-item to
-- opposite

require
exists:not destroyed

ensure
state_is_true: state =not old state

feature -- Implementation

implementation: EV_CHECK_MENU_ITEM_I

end -- class EV_CHECK_MENU_ITEM

5.5 EV_RADIO_MENU_ITEM
A radio item is a check item that belong to an exclusive group, only one item in the
group can be selected at a time, the other items are cleared.

To have two items in the same group, you need to make one of the item the peer
of the other one by using the featureset_peer (peer: EV_RADIO_MENU_ITEM).

ITEMS §5.684

an
a radio
Class

indexing
description: "EiffelVision radio menu item. Item that must be put in

EV_MENU_ITEM_HOLDER. It has the same appearance than the check menu-item, yet, when
menu-item is checked, all the other radio menu-item of the container are unchecked."

status: "See notice at end of class"
id: "$Id: ev_radio_menu_item.e,v 1.6 1999/03/26 01:34:43 aitkaci Exp $"
date: "$Date: 1999/03/26 01:34:43 $"
revision: "$Revision: 1.6 $"

class interface
EV_RADIO_MENU_ITEM

creation
make,
make_with_text,
make_peer_with_text

feature -- Implementation

implementation: EV_RADIO_MENU_ITEM_I

feature -- Status Setting

set_peer (peer: EV_RADIO_MENU_ITEM)
-- Put in same group as peer

require
exists:not destroyed

ensure
implementation.is_peer (peer)

end -- class EV_RADIO_MENU_ITEM

5.6 EV_STATUS_BAR_ITEM
The parent of a status bar item can only be a status bar. You can set the width of this
item. If you want the item to span the length of the status bar, set width to-1. By
default the last item added has a width of-1.

§5.7 EV_MULTI_COLUMN_LIST_ROW 85

s."
Class

5.7 EV_MULTI_COLUMN_LIST_ROW
The parent of a multi-column list row can only be a multi-column list.

Class

indexing
description: "EiffelVision multi-column list row. These rows are used in the multi-column list
status: "See notice at end of class"
note: "It is not an item because it doesn%’t have the same options."
date: "$Date: 1999/03/12 20:10:12 $"
revision: "$Revision: 1.8 $"

class interface
EV_MULTI_COLUMN_LIST_ROW

creation
make,
make_with_text

feature -- Access

columns: INTEGER
-- Number of columns in the row

require
exists:not destroyed

parent: EV_MULTI_COLUMN_LIST
-- List that container this row

feature -- Status report

is_selected: BOOLEAN
-- Is the item selected

require
exists:not destroyed

feature -- Status setting

set_selected (flag: BOOLEAN)
-- Select the item if flag, unselect it otherwise.

ITEMS §5.786
require
exists:not destroyed

toggle
-- Change the state of selection of the item.

require
exists:not destroyed

feature -- Element Change

set_cell_text (column: INTEGER; a_text: STRING)
-- Make text the new label of the column-th
-- cell of the row.

require
exists:not destroyed;
column_exists: column >= 1and column <= columns;
text_not_void: a_text /= void

set_text (a_text: ARRAY [STRING])
require

exists:not destroyed;
text_not_void: a_text /= void;
valid_text_length: a_text.count <= columns

feature -- Event -- removing command association

remove_activate_commands
-- Empty the list of commands to be executed
-- when the item is activated.

require
exists:not destroyed

remove_deactivate_commands
-- Empty the list of commands to be executed
-- when the item is deactivated.

require
exists:not destroyed

feature -- Event : command association

add_activate_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed

§5.7 EV_MULTI_COLUMN_LIST_ROW 87
-- when the item is activated.
require

exists:not destroyed;
valid_command: cmd /= void

add_deactivate_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed
-- when the item is deactivated.

require
exists:not destroyed;
valid_command: cmd /= void

end -- class EV_MULTI_COLUMN_LIST_ROW

ITEMS §5.788

6

Components
Some graphical components are not widgets be ause they cannot be add to a container.
In EiffelVision, we find some of this components which are described here.

6.1 EV_PIXMAP
A pixmap is a picture that contains several pixels of possibly different colors
(pixmap = pixel map). It can be either read from a file or created empty and then
filled. You can draw on a pixmap — drawings are then stored on the pixmap.

A pixmap can be set in all the pixmapable widgets as either buttons or items.

Class

indexing
description: "EiffelVision pixmap. Pixmap is a data structure that contains a picture."
status: "See notice at end of class"
id: "$Id: ev_pixmap.e,v 1.6 1999/02/02 01:20:44 aitkaci Exp $"
date: "$Date: 1999/02/02 01:20:44 $"
revision: "$Revision: 1.6 $"

class interface
EV_PIXMAP

creation
make,
make_from_file

feature -- Measurement

height: INTEGER

width: INTEGER

COMPONENTS §6.290

e menu
feature -- Element change

read_from_file (file_name: STRING)
-- Load the pixmap described in ’file_name’.
-- If the file does not exist, an exception is
-- raised.
-- What about a file in wrong format?

require
file_name_exists: file_name /= void

feature -- Implementation

implementation: EV_PIXMAP_I
-- Implementation of pixmap

end -- class EV_PIXMAP

6.2 EV_SCREEN
A screen is a drawable and refers to the area outside the application windows. By
using the classEV_SCREEN, an application can draw figures and pixmaps
anywhere on the screen, without having to open any windows.

6.3 EV_MENU
A menu is a rectangular area that contains a vertical list of menu items. Each menu
item is of type EV_MENU_ITEM . The parent of a menu can be an
OPTION_BUTTON , anEV_STATIC_MENU_BAR or anEV_POPUP_MENU.

Class

indexing
description: "EiffelVision menu. Menu contains several menu items and shows them when th

is opened."
status: "See notice at end of class"
id: "$Id: ev_menu.e,v 1.11 1999/03/26 01:35:49 aitkaci Exp $"
date: "$Date: 1999/03/26 01:35:49 $"
revision: "$Revision: 1.11 $"

class interface
EV_MENU

creation
make,

§6.4 EV_STATIC_MENU_BAR 91

ow."
make_with_text

feature -- Access

text: STRING
-- Label of the current menu

require
exists:not destroyed

feature -- Element change

set_parent (par: EV_MENU_HOLDER)
-- Make par the new parent of the item.

require
exists:not destroyed

feature -- Implementation

implementation: EV_MENU_I

end -- class EV_MENU

6.4 EV_STATIC_MENU_BAR
A static menu bar displays accross the top of a window and can recive an unlimited
number of menus.

indexing
description: "EiffelVision static menu bar. A menu bar that alwaysstay on the top of the wind
status: "See notice at end of class"
id: "$Id: ev_static_menu_bar.e,v 1.6 1999/03/26 01:35:49 aitkaci Exp $"
date: "$Date: 1999/03/26 01:35:49 $"
revision: "$Revision: 1.6 $"

class interface
EV_STATIC_MENU_BAR

COMPONENTS §6.592
creation
make

feature -- Access

parent: EV_WINDOW
-- The parent of the Current widget
-- If the widget is an EV_WINDOW without parent,
-- this attribute will be Void

require
exists:not destroyed

end -- class EV_STATIC_MENU_BAR

6.5 EV_STATUS_BAR
A status bar refers to the area at the bottom of a window that gives informatino. You
can add items to the status bar. These items are of typeEV_STATUS_BAR_ITEM .

Class

7

Standard Dialogs
A common dialog is a dialog that contains children which perform a specific function
as opening a file or choosing a printer. All of them are modal dialogs — the
application looses focus until the dialog closes. At this point, the commands execute.

7.1 EV_STANDARD_DIALOG

All dialogs inherit from the deferred classEV_STANDARD_DIALOG . This class
contains only one feature :show. When you create a dialog, the options of the dialog
can be changed when the window does not display.

Class

7.2 EV_MESSAGE_DIALOG

EV_MESSAGE_DIALOG is a deferred class ancestor of the four classes :
EV_QUESTION_DIALOG , EV_WARNING_DIALOG , EV_ERROR_DIALOG
andEV_INFORMATION_DIALOG .

These dialogs send a graphical message to the user and contain a title, a message
and a combination of buttons. You can choose any of combination among the
following :

• OK ,

• OK andCancel,

• Yes andNo,

• Yes, No andCancel,

• Abort , Retry andIgnore

• Retry andCancel

An Help button can also be added to any of those combinaison.

STANDARD DIALOGS §7.294

s for

tures
ose the
Each dialog contains a default behavior. For example, if a dialog contains the
Cancel, the ESC key closes the window and activates thecancelcommand. The
ENTER key is equivalent to clicking theYes or theOK button.

Class

indexing
description: "EiffelVision message dialog. Deferred class, ancestor of the standard dialog

warning, informations, error or question."
note: "Once the dialog is create with the procedure ‘make_default%’ the status settings fea

have no effect. To use them, the dialog must be first created with ‘make%’ and then the user cho
buttons he wants in the dialog."

status: "See notice at end of class"
date: "$Date: 1999/03/25 20:24:51 $"
revision: "$Revision: 1.10 $"

deferred class interface
EV_MESSAGE_DIALOG

feature -- Status report

selected_button: STRING
-- Return the label of the selected button.
-- Can be any string in :
-- "OK", "Cancel", "Yes", "No", "Abort",
-- "Retry", "Ignore", "Help".

feature -- Status setting

add_help_button
-- Add an "Help" button to the other choosen buttons
-- in the dialog box.

require
exist:not destroyed

show_abort_retry_ignore_buttons
-- Show three buttons in the dialog: "Abort", "Retry" and "Ignore".

require
exist:not destroyed

show_ok_button
-- Show one button in the dialog : "OK".

require

§7.2 EV_MESSAGE_DIALOG 95
exist:not destroyed

show_ok_cancel_buttons
-- Show two buttons in the dilaog: "OK" and "Cancel".

require
exist:not destroyed

show_retry_cancel_buttons
-- Show two buttons in the dialog: "Retry" and "Cancel".

require
exist:not destroyed

show_yes_no_buttons
-- Show two buttons in the dialog: "Yes" and "No".

require
exist:not destroyed

show_yes_no_cancel_buttons
-- Show three buttons in the dialog: "Yes", "No" and "Cancel".

require
exist:not destroyed

feature -- Element change

set_message (str: STRING)
-- Make str the new title of the dialog.

require
exists:not destroyed;
valid_message: str /= void

set_title (str: STRING)
-- Make str the new title of the dialog.

require
exists:not destroyed;
valid_title: str /= void

feature -- Implementation

implementation: EV_MESSAGE_DIALOG_I

feature -- Event - command association

STANDARD DIALOGS §7.296
add_abort_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed when
-- the Abort button is pressed.
-- If there is no Abort button, the event never occurs.

require
exists:not destroyed;
valid_command: cmd /= void

add_cancel_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed when
-- the "Cancel" button is pressed.
-- If there is no "Cancel" button, the event never occurs.

require
exists:not destroyed;
valid_command: cmd /= void

add_help_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed when
-- the "Help" button is pressed.
-- If there is no "Help" button, the event never occurs.

require
exists:not destroyed;
valid_command: cmd /= void

add_ignore_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed when
-- the Ignore button is pressed.
-- If there is no Ignore button, the event never occurs.

require
exists:not destroyed;
valid_command: cmd /= void

add_no_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed when
-- the No button is pressed.
-- If there is no No button, the event never occurs.

require
exists:not destroyed;
valid_command: cmd /= void

add_ok_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed when

§7.2 EV_MESSAGE_DIALOG 97
-- the "OK" button is pressed.
-- If there is no "OK" button, the event never occurs.

require
exists:not destroyed;
valid_command: cmd /= void

add_retry_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed when
-- the Retry button is pressed.
-- If there is no Retry button, the event never occurs.

require
exists:not destroyed;
valid_command: cmd /= void

add_yes_command (cmd: EV_COMMAND; arg: EV_ARGUMENT)
-- Add cmd to the list of commands to be executed when
-- the Yes button is pressed.
-- If there is no Yes button, the event never occurs.

require
exists:not destroyed;
valid_command: cmd /= void

feature -- Event -- removing command association

remove_abort_commands
-- Empty the list of commands to be executed when
-- "Abort" button is pressed.

require
exists:not destroyed

remove_cancel_commands
-- Empty the list of commands to be executed when
-- "Cancel" button is pressed.

require
exists:not destroyed

remove_help_commands
-- Empty the list of commands to be executed when
-- "Help" button is pressed.

require
exists:not destroyed

STANDARD DIALOGS §7.398
remove_ignore_commands

-- Empty the list of commands to be executed when

-- "Ignore" button is pressed.

require

exists:not destroyed

remove_no_commands

-- Empty the list of commands to be executed when

-- "No" button is pressed.

require

exists:not destroyed

remove_ok_commands

-- Empty the list of commands to be executed when

-- "OK" button is pressed.

require

exists:not destroyed

remove_retry_commands

-- Empty the list of commands to be executed when

-- "Retry" button is pressed.

require

exists:not destroyed

remove_yes_commands

-- Empty the list of commands to be executed when

-- "Yes" button is pressed.

require

exists:not destroyed

end -- class EV_MESSAGE_DIALOG

7.3 EV_INFORMATION_DIALOG
An information dialog is a message dialog that uses the common pixmap for
information. A default information dialog only contains theOK button.

§7.4 EV_QUESTION_DIALOG 99
7.4 EV_QUESTION_DIALOG

A question dialog is a message dialog that uses the common pixmap for a question
(a question mark). A default question dialog contains theYes andNo buttons.

7.5 EV_WARNING_DIALOG

A warning dialog is a message dialog that uses the common pixmap for warning (a
exclamation mark). A default warning dialog only contains theOK button.

7.6 EV_ERROR_DIALOG

An error dialog is a message dialog that uses the common pixmap for error (a red
cross). A default error dialog only contains anOK button.

STANDARD DIALOGS §7.7100
7.7 EV_FILE_SELECTION_DIALOG
EV_FILE_SELECTION_DIALOG is a deferred ancestor of both
EV_FILE_SAVE_DIALOG andEV_FILE_OPEN_DIALOG .

You can use these dialogs to choose a file to save, or to retrieve some information
to or from a file.

Class

7.8 EV_FILE_SAVE_DIALOG
A file save dialog is a file selection dialog that opens a file for editing.

7.9 EV_FILE_OPEN_DIALOG
A file open dialog is a file selection dialog that opens a file for reading.

7.10 EV_DIRECTORY_SELECTION_DIALOG
A directory selection dialog is a dialog that returns a directory choosen by the user.

Class

7.11 EV_FONT_SELECTION_DIALOG
A font selection dialog is a dialog used to retrieve the the choice of the user about a
font and the different options of the font, as the size or the format.

Class

7.12 EV_COLOR_SELECTION_DIALOG
A color selection dialog is a dialog used to retrieve the choice of a user about a color.

Class

7.13 EV_PRINT_DIALOG
A print dialogs is a dialogs used to retrieve the choice of the user about a printer and
the different options of printing.

Class

	The new EiffelVision Library
	Preface: Why EiffelVision?
	EiffelVision scope
	EiffelVision architecture
	The new EiffelVision and its benefits
	Scope
	Definitions, acronyms and abbreviations
	References
	Status of this document and of the library
	Prerequisites
	Organisation of the manual

	Contents
	1 1 The EiffelVision model
	1.1 Events
	1.2 Commands
	1.3 Figures
	1.4 Drag and Drop
	1.5 Pick and Drop

	2 EiffelVision basics�
	2.1 Widgets
	Creation
	Management
	class

	2.2 Events
	General Events
	Widget-specific events

	2.3 Event Data
	EV_EVENT_DATA
	EV_BUTTON_EVENT_DATA
	EV_MOTION_EVENT_DATA
	EV_KEY_EVENT_DATA

	2.4 Commands
	Class

	2.5 Undoable Command
	Class

	2.6 Routine Command
	Class

	2.7 Arguments
	One, two or three parameters
	Tuple arguments

	2.8 Timers
	2.9 Colors
	2.10 Fonts

	3 3 Containers
	Class
	3.1 EV_WINDOW
	Class

	3.2 EV_DIALOG
	Class

	3.3 EV_FIXED
	Class

	3.4 EV_BOX
	Class

	3.5 EV_VERTICAL_BOX
	Class

	3.6 EV_HORIZONTAL_BOX
	Class

	3.7 EV_TABLE
	Class

	3.8 EV_DYNAMIC_TABLE
	Class

	3.9 EV_SCROLLABLE_AREA
	Class

	3.10 EV_FRAME
	Class

	3.11 EV_SPLIT_AREA
	Class

	3.12 EV_NOTEBOOK
	Class

	4 4 Primitives
	4.1 EV_BUTTON
	Class

	4.2 EV_TOGGLE_BUTTON
	Class

	4.3 EV_CHECK_BUTTON
	Class

	4.4 EV_RADIO_BUTTON
	Class

	4.5 EV_OPTION_BUTTON
	Class

	4.6 EV_LABEL
	Class

	4.7 EV_TEXT_COMPONENT
	Class

	4.8 EV_TEXT_FIELD
	Class

	4.9 EV_PASSWORD_FIELD
	Class

	4.10 EV_SPINBUTTON
	4.11 EV_COMBO_BOX
	Class

	4.12 EV_TEXT_AREA
	Class

	4.13 EV_TEXT_EDITOR
	4.14 EV_SEPARATOR
	Class

	4.15 EV_RANGE
	4.16 EV_SCROLLBAR
	4.17 EV_SCALE
	4.18 EV_LIST
	Class

	4.19 EV_MULTI_COLUMN_LIST
	Class

	4.20 EV_TREE
	Class

	4.21 EV_PROGRESS_BAR
	Class

	4.22 EV_DRAWING_AREA

	5 5 Items
	Class
	5.1 EV_LIST_ITEM
	5.2 EV_TREE_ITEM
	Class

	5.3 EV_MENU_ITEM
	Class

	5.4 EV_CHECK_MENU_ITEM
	Class

	5.5 EV_RADIO_MENU_ITEM
	Class

	5.6 EV_STATUS_BAR_ITEM
	Class

	5.7 EV_MULTI_COLUMN_LIST_ROW
	Class

	6 6 Components
	6.1 EV_PIXMAP
	Class

	6.2 EV_SCREEN
	6.3 EV_MENU
	Class

	6.4 EV_STATIC_MENU_BAR
	6.5 EV_STATUS_BAR
	Class

	7 7 Standard Dialogs
	7.1 EV_STANDARD_DIALOG
	Class

	7.2 EV_MESSAGE_DIALOG
	Class

	7.3 EV_INFORMATION_DIALOG
	7.4 EV_QUESTION_DIALOG
	7.5 EV_WARNING_DIALOG
	7.6 EV_ERROR_DIALOG
	7.7 EV_FILE_SELECTION_DIALOG
	Class

	7.8 EV_FILE_SAVE_DIALOG
	7.9 EV_FILE_OPEN_DIALOG
	7.10 EV_DIRECTORY_SELECTION_DIALOG
	Class

	7.11 EV_FONT_SELECTION_DIALOG
	Class

	7.12 EV_COLOR_SELECTION_DIALOG
	Class

	7.13 EV_PRINT_DIALOG
	Class

