25

This revision: Eiffel 4.70-1, 23 May 2000 19:22 (SB time)

Extracted from ongoing work on future third edition of “Eiffel: The Language”.
Copyright Bertrand Meyer 1986-2000. Access restricted to purchasers of the first o
second printing (Prentice Hall, 1991). Do not reproduce or distribute.

Agents, iteration and introspection

25.1 OVERVIEW

A

o

A,
FAY

Objects represent information equipped with operations. Operations and
objects are clearly defined concepts; no one would mistake an operation for
an object.

For some applications — numerical computation, iteration, writing
contracts, building development environments, and “introspection” (a
system'’s ability to explore its own properties) — you may find the
operationsso interesting on their own as to treat thenmobgectsand pass
these objects around to software elements, which can use them to execute
the operations whenever they want. Because this separates the place of an
operation’sdefinitionfrom the place of itexecutionthe definition can be
incomplete, since you can provide any missing details at the time of any
particular execution.

You can creategent objects to describe such partially or completely
specified computations. Agents combine the power of higher-level
functionals — operations acting on other operations — with the safety of
Eiffel's static typing system.

Agents are not for the beginning Eiffel user. If this is your first reading,
you should most likely skip this chapter.

25.2 AQUICK PREVIEW

[]
|

I

Why do we need agents? The rest of this chapter will present a detailed
rationale, but it does not hurt to start with a few example uses. This preview
contains few explanations, so if this is your first brush with agents some of
it may look mysterious; it will, however, give you an idea of the
mechanism’s power, and by chapter end all the details will be clear.

Assume you want to integrate a functign(x: REAL: REALover the
interval [0, 1]. With your_integratorof a suitable type NTEGRATOR
(detailed later) you will simply write the expression

‘ your_integrator integral (~g (?), 0.0, 1.0)

648 AGENTS, ITERATION AND INTROSPECTION §25.2

Here ~g (?), the first argument tdntegral, is an agent expression

distinguished by a tilde charactelappearing before the function nange,
The tilde avoids any confusion with a routine call suchgg8.5): at the

place we calintegral, we don’t want to computg yet! Instead, what we
pass tointegral is a “agent” object enablingntegral to call g when it

pleases, as often as it pleases, on whatever values it pleases.

We must tellintegralwhere to substitute such values fomat the places
where its algorithm will need to evaluage¢o approximate the integral. This
is the role of the question maPkreplacing the argument ¢p

We may use the same scheme in

‘ your_integrator integral (~h (?, u, v), 0.0, 1.0)

==
i

1
to compute the integr |n h (x, u, v) dx , wherk is a three-argument

functionh (x: REAL a: T1; b: T2): REALandu andv are arbitrary values. As
before we use a question mark at the “open” position, corresponding to the
integration variablg, and fillin the “closed” positions with actual valueandv.

Note the flexibility of the mechanism: it allows you to use the same
routine,integral, to integrate a one-argument function suchi as well as
functions such als involving an arbitrary number of extra values.

You can rely on a similar structure to provide iteration mechanisms on
data structures such as lists. Assume a €&swith an attribute

\ intlist: LINKED_LIST[INTEGER \

and a function
‘integer_propert;(i: INTEGER: BOOLEAN ‘

=
i

returning true or false depending on a property invohiingou may write

‘ intlist. for_all (~integer_property(?)) ‘

to denote a boolean value, true if and only if every integer in thérlisst
satisfiesinteger_property This expression might be very useful, for
example, in a class invariant. It is interesting to note that it will work for
any kind ofinteger_propertyeven if this function involves attributes or
other features aEC, that is to say, arbitrary properties of the current object.

Now assume that i@C you also have a list of employees:
\ emplist LINKED_LIST[EMPLOYEH \

and that clasEMPLOYEEhas a functioris_married BOOLEAN with no
argument, telling us about the current employee’s marital status. Then you
may also write irCCthe boolean expression

‘emplis‘r. for_all ((EMPLOYEB ~is_married ‘

=
i

§25.2 A QUICK PREVIEW

649

to find out whether all employees in the list are married. The argument to
for_all is imitated from a normal feature calbme_employedés _married

but instead of specifying a particular employee we just give the type
{EMPLOYEE, to indicate wherefor_all must evaluatés_married for
successive targets taken from the the list. Using a tilde instead of a dot
signifies that the expression we pas$ao all is not the result of a call to
is_married(a boolean value, invalid here) but the featisrenarrieditself.

What is remarkable in the last two examples is again the flexibility of
the resulting iteration mechanism and its adaptation to the object-oriented
form of computation: you can use the same iteration routine, foerall
from classINKED_LIST to iterate actions applying to either:

» The target of a feature, as withis_married a feature of class
EMPLOYEEwith no arguments, to be applied toEBMPLOYERarget.

» The actual argument of a feature, as withinteger_propertywhich
evaluates a property of its argumeint— and may or may not, in
addition, involve properties of its target, an object of {2

It seems mysterious that a single iterator mechanism can handle both cases
equally well We will see how to writefor_all and other iterators
accordingly. The trick is that they work on their “open” operands, and that
when we call them we may choose what we leave open: either the argument
as in theis_positive and integral case, where the open position is
represented by a question mark, or the target, as i therriedcase.

Now assume that you want to pass to some other software component,
in the style of STL — the C++ “Standard Template Library” — the
mechanisms needed to execute the cursor resetting and advance operations,
startandforth, on a particular list. Here nothing is left open: you fix the list,
and the operations have no arguments. You may write

| other_componentsome_featuryour_list-start, your_list-forth) |

All operands — target and arguments — of the agents passed to
other_componentre “closed”, soother_componentan execute call
operations on such objects without providing any further information.

Atthe other extreme, you might leave an agent expression fully open, asin

| other_componenbther_feature{ LINKED_LIST} ~extend(?)) |

so thatother_componentwhen it desires to apply a call operation, will
have to provide both a linked list and an actual argument to exestdad

You will indeed be able, whenever you have an agent object, to apply to
it a procedurecall, whose arguments are the open operands of the original
agent expressiorcéll has no arguments if all operands are closed, as in the
next-to-last example). This will have the same effect as an execution of the
original feature —start, forth, extend— on a combination of the closed
and open arguments.

650 AGENTS, ITERATION AND INTROSPECTION §25.2

In the end an expression such{dasNKED _LIST ~extend(?), which
can in fact be written jusfLINKED_LIST} ~extendwithout any explicit
argument, denotes ardutine object”. a representation of the routine
extendfrom LINKED_LIST such as could be used by browsing tools or
otherintrospectivefacilities.

All these examples used, to define the agents, a routine of a class. This
is indeed the most common case. But for more flexibility — especially
useful when you use agents to express advanced contracts — you may also
write aninline agent, built from an arbitrary expression or instruction, with
explicit entities representing the open positions. For example we may
rewrite the earlier agent expressieinteger_property?) as an inline agent

‘ i: INTEGER] integer_propertyi)

=
I

which means exactly the same thing; the convention is simply that you
name and declare the open argumiest as if it were a routine argument
— instead of referring to it implicitly through a question mark. The vertical
bar| is the defining mark of inline agents.ititeger_propertys a function

of the enclosing class this form is not very useful, and in fact the non-inline
variant~integer_property(?) is more concise and usually preferable. But
with the inline form you can also write an agent such as

\ i: INTEGER] item(i) = a.item (i) + b.item i) \

k

which could be useful for example in a postcondition

summed(lower |..|uppe).for_all
(i: INTEGER] item(i) = a.item(i) + b.item(i))

m=
i

expressing that for every elemenbf the intervallower |..| upperthe
value of the item at position(in a structure such as an array or list) is the
sum of the corresponding valuesdrmndb. Here too the non-inline form

is possible in principle, and more concise, since we can write the agent as
is_sum_of?, a, b), using a boolean-valued functiasr sum_okuch that
is_sum_ofi, x, y) is true if and only ifitem (i) = x.item (i) + y.item(i).

But if our postconditions and invariants need lots of properties of this
kind, we will end up introducing numerous routines suclisasum_of

with no other use in the class. In such cases, inline agents are useful. For
an agent involving a single routine suchiaseger_propertyintegral,
is_married extendand the other examples above, the original non-inline
form using the tilde~- and question marR is shorter, more abstract and

hence preferable. _ _
- For other interesting

. . . applications seéTWO
You may wonder how this can all work in a type-safe fashion. So aApvaNcED EXAM-

time to stop this preview and cut to the movie. PLES", 25.11, pge

§25.3 NORMAL CALLS 651

25.3 NORMAL CALLS

First we should remind ourselves of the basic propertideatiure calls. . Feature calls were
When programming with Eiffel we rely all the time on this fundamerstudied in chaptez3
mechanism of object-oriented computation. We write things like ~ 2nd their type proper-

ties in chapteR4.
\ [Q] a0.f (al, a2 ad

to mean: call featuréon the object attached &0, with actual arguments

al, a2, a3. In Eiffel this is all governed by type rules, checkable statically:

f must be a feature of the base class of the g@end the types chl and

the other actuals of the call must all conform to the types specified for the
corresponding formals in the declaratiorf.of

In a frequent special cas®, the target of the call, is justCurrent,
denoting the current object. Then we may omit the dot and and the target
altogether, writing the call as just

\ [U] f(al a2 ad \

which assumes théats a feature of the class in which this call appears. The
first form, with the dot, is aualifiedcall; the second form isnqualified
(hence the names [Q] and [U] given to our two examples).

In either form the call is syntactically an expressiohig a function or
an attribute, and an instructiorfis a procedure. fhas been declared with
no formals (as in the case of a function without arguments, or an attribute)
we omit the list of actualgal, a2 a3).

The effect of executing such a call is to apply feattite the target
object, with the actuals given if any. fis a function or an attribute, the
value of the call expression is the result returned by this application.

To execute properly, the call needs the value of the target and the
actuals, for which this chapter needs a collective name:

Operands of a call

The operands of a call include its target (explicit in a qualifi
call, implicit in an unqualified call), and its arguments if any.

9%
o

In the examples the operands afor Currentin the unqualified version
[U]), al, a2anda3. Also convenient is the notion gbsitionof an operand:

Operand position

The target of a call (implicit or explicit) has position 0. Thth
actual argument, for any applicalbléas position.

Positions, then, range from 0 to the number of arguments declared for the
feature. Position 0, the target position, is always applicable.

652 AGENTS, ITERATION AND INTROSPECTION §25.4

25.4 FROM CALLS TO AGENTS

For a call such as the above, we expect the effect just discussed to occur as a
direct result of executing the call instruction or expression: the computation

k=amsd i jmmediate. In some cases, however, we might want to write an expression
that only describesthe calls intended computation, and eégecutethat
description later on, at a time of our own choosing, or someone else's. This
is the purpose of agent expressions, which may be descriloetbg®d calls

Why would we delay a call in this way? Here are some typical cases:

A *We might want the call to be applied to all the elements of a certain
structure, such as a list. In such a case we will specify the agent
expression once, and then execute it many times without having to re-
specify it in the software text. The software element that will repeatedly
execute the same call on different objects is known astexator.
Functionfor_all, used earlier, was an example of iterator.

B «In an iterator-like scheme for numerical computation, we might use a
mechanism that applies a call to various values in a certain interval, for
example to approximate the integral of a function over that interval. The
first example in this chapter relied on suchrdegral function.

C «We might want the call to be executed by another software element:
passing an agent objectto that elementis away to give it the right to operate
on some of our own data structures, at a time of its own choosing. This
was illustrated with the calls passing ather_componensome agent
expressions representing operations applicabeuo list

D -We might specify that any future creation of objects of a certain type

apply the call to initialize these objects.
E «We might want to ensure that the call is executed only when a\%hgiﬁ'&%i%r‘osée,,e }
needed, and then only once for any particular object. This would gi‘g 6 page270 The once
a “once per object” mechanism along the lines of “once functicper object mechanism

(which are executed once per system). gzg‘gizggngzlgw

F «Finally, we may be interested in the agent as a way to gain informfigspection is also
about the feature itself, whether or not we ever intend to execute thecalledrefiection, but the:
This may be part of the more general goal of providinty ospectve g;;ﬁg;?a‘i‘gpears more
capabilities: ways to enable a software system to explore and manij
information about its own properties.

These examples illustrate one of the differences between agent expressions
and calls: to execute a call we need the value of all its operands (target and
actuals); but for an agent expression we may want to leave some of the
operands open for later filling-in. This is clearly necessary for casasd

B, in which the iteration or integration mechanism will need to apply the
feature repeatedly, using different operands each time. In an integration

§25.4 FROM CALLS TO AGENTS 653

fica 000

we will need to applyg to successive values of the interjalb].

For an agent we need to distinguish between two moments:

HEF1ECT B

Construction time, call time

The construction time of an agent object is the time of
evaluation of the agent expression defining it.

Its call time is when a call to its associated operation is executed.

Since the only way to obtain an agent initially is throwglent expressionas
specified next, it is meaningful to talk about the “agent expression defining it".

For a normal call the two moments are the same. For an agent we will 5 A recise definition
one construction time (zero if the expression is never evaluated), ancg’fl“opzq” and J
or more call times. At construction time, we may leave some operaacpgzzrs gﬂegggéga
unspecified; they they will be called thmpen operands. At call time o
however, the execution needs all operands, so the call will need to sgReaders familiar with
| for the open operands. These values may be different for diffamoda calculus may
va ues_ 3 p p ’ : y . - think of open as “free”
executions (different call times) of the same agent expression (with a sand closed as “bound”

construction time).

There is no requirement thall operands be left open at creation time:
we may specify some operands, which will be closed, and leave some other
open. In the example of computing, for some valuasdy, the integral

J' h (x, u, v) dx
X=a

wherehis a three-argument function, we pass to the integration mechanism an
agent that is closed on its last two operana(v) but open orx.

Nothing forces you, on the other hand, to leavs operand open. An
agent with all operands closed corresponds to the kind of application called
C above, in which we don't want to execute the call ourselves but let
another software elementher_componentarry it when it is ready. We
choose the construction time, and package the call completely, including
all the information needed to carry it ouwdther_componenthooses the
call time. This style is used by iterators in the C++ STL library.

At the other extreme, an agent withll operands open has no
information about the target and actuals, but includes all the relevant
information about the feature. This is useful in applicatinpassing
around information about a feature for introspection purposes, enabling a
system to deliver information about its own components.

654 AGENTS, ITERATION AND INTROSPECTION §25.5

25.5 WHAT IS AN AGENT EXPRESSION?

A normal call is a syntactical component — instruction or expression —
meant only for one thing: immediate execution. If it is an expression
(because the feature is a function), it has a value, computed by the
execution, and so denotes an object.

=] An agent expression has a different status. Since construction time is
I separate from call time, the agent expression candenigte an object That

object, called amgent contains all the information needed to execute the call
later, at various call times. This includes in particular:

« Information about the routine itself and its base type.
 The values of all the closed operands.

What is the type of an agent expression? Four Kernel Library classes are
used to describe such typdOUTINE PROCEDUREFUNCTIONand
PREDICATE Their class headers start as follows:

deferred classROUTINE[BASE OPEN—>TUPLH

classPROCEDURHBASE OPEN—> TUPLH inherit
ROUTINE[BASE OPEN

classFUNCTION[BASE OPEN—> TUPLE RES inherit
ROUTINE[BASE OPEN

classPREDICATHBASE OPEN—> TUPLH inherit
FUNCTION[BASE OPEN

In theactualclasstexts, the formal generic matters have narBESE_TYPE tﬁe%gtzr%?m
OPEN_ARGSand RESULT_TYPBEo avoid conflicts with programmer- starting on pageséa
chosen class names. This chapter uses shorter names for simplicity. o

If the associated feature is a procedure the agent will be an instance of
PROCEDURE for a function or attribute, we get an instance of
PREDICATEwhen the result is boolean, B UNCTION with any other
type. Here for ease of reference is a picture of the inheritance hierarchy:

— \ Agent classes
ROUTINE

PROCEDUR FUNCTION

PREDICATE

§25.6 AGENT EXPRESSIONS 655

The role of the formal generic parameters is:
* BASE type (class + generics if any) to which the feature belongs.
» OPEN tuple of the types of open operands, if any.
* RES result type for a function.

One of the fundamental features of cIR&SUTINEis

call (v: OPEN is
-- Callfeature with allits operands, usintpr the open operands.

In addition,FUNCTIONandPREDICATEhave the feature

last_result RES
-- Function result returned by last calldall, if any

and, for convenience, the following function combinta]l andlast_result

item(v: like open_operangsRESIs
-- Result of calling feature with all its operands,
-- usingv for the open operands.
-- (Usescall for the call.)
ensure
set_by callResult=last_result

Note that the formal generic parameters ROUTINE PROCEDURE
FUNCTION and PREDICATEprovide what we need to make the agent
mechanism statically type-safe. In particular @BEN parameter, a tuple
type, gives the exact list of open operand types; since the argunuatitand

itemis of typeOPEN the compiler can make sure that at call time the actual
arguments taall will be of the proper types, conforming to the original
feature’s formal argument types at the open positions. The actuals at closed
positions are set at construction time, again with full type checking. So the
combination of open and closed actuals will be type-valid for the feature.

ROUTINE PROCEDURE FUNCTION and PREDICATE have more _ Section®\.6.26to

features than listed above; in particular, they provide introspection facilitiesA.6.28 starting on
describing properties of the associated routines and discussed below. FoPagesdt
complete interface specification, see tberrespondingsections in the

presentation of Kernel Library classes.

25.6 AGENT EXPRESSIONS

How do we produce agent objects? We agent expressiorfsr which the _, “INLINE
basic syntactical rule is very simple: start from a normal feature call; ww
qualified case, replace its dot with a tilde; in the unqualified case, gPage 7>

tilde before the feature name. (The syntax is differentifdine agent

expression, discussed irader section.)

656

AGENTS, ITERATION AND INTROSPECTION §25.6

So if a valid call of the qualified form is

e
i

0. f (a1, a2, a3 |
you get an agent expression by replacing the dot with a tilde:
|a0~f (a1, a2 a3 |

In the case of a valid unqualified call

=
I

\ f(al, a2 ad \

wheref is a feature of the enclosing class, you obtain the corresponding call
expression by adding a tilde:

~f(al a2 a3 |

In either case, the new notation is not a call (instruction or expression) any
more, but an expression of a new syntactic kiRgature agentwhich
denotes an agent, of BROCEDUREtype if f is a procedure and a
FUNCTIONtype iff is a function.

You can do with an agent expression all you are used to do with cffis éxample assumes
expressions. You can assign it to an entity of the appropriate tthatthcf,'t%ngn;ﬁenel“c
assuming is a procedure aéclassCC, you may write, in clas€Citself; >0 "2\ 1Spomaciass

iamrin

and a type
x: PROCEDURHCC, TUPLH
x: a0~f (al, a2 ad
x. call ([])

Note that here all operands are closed since we specified the a@rged
all the operandal, a2, a3, so the second formal generic is jG&iPLE, and
the call tocall takes an empty tuplq.

More commonly than assigning a call expression to an entity as here,
you will pass it as actual argument to a routine, as in

m=
i

‘ some_other_componerto_somethinga0O~f (a1, a2, ad)) ‘

wheredo_somethingn the corresponding class, takes a forpdéclared as
‘p: PROCEDURHECC, TUPLH ‘

or just
‘ p: PROCEDURHANY TUPLH ‘

presumably to caltall onp at some later stage, as we will shortly learn Z~scheneCwason
do. This is the scheme that waalledC in the presentation of examplpagets2
applications: passing a completely closed agent to another component ot

the system, to let it execute the call when it chooses to. For example you

can pasgour_list-startor your_list~extend'some_value

§25.7 KEEPING OPERANDS OPEN 657

25.7 KEEPING OPERANDS OPEN

The examples just seen are still of limited interest because all their operands
are closed. What if you want to keep some operands open for latter filling-
in at call time, for example by an iteration or integration mechanism?

For arguments/fewill see how to handle the target in a short while) *5 About the target see
basic technique is very simple: to keep an actual open, just replace ifLEAVING THE BR-
. o GETOPEN", page659
guestion mark. This yields examples such as

w w:=a0~f (al, a2 ?)
a=n x:=a0~f(al, ?,ad
I y:=a0~f(a1, ?,?)
z:=a0~f(?,2,?)

The respective types of these call expressions are, assuming ithat
procedure with formals declared of types T2 andT3:

w: PROCEDURETO, TUPLE[T3]]

x: PROCEDURETO, TUPLE[TZ]]

y: PROCEDURETO, TUPLE[T2, T3]

z PROCEDURHTO, TUPLE[TL, T2, T3]

If f were a function, the types would ugeUNCTION instead of
PROCEDUREwith one more actual generic representing the result type.
For a predicate (boolean-valued function), you mayRREDICATE

You will have noted how the generic parameterfR@UTINEand itS _, The role of the first
@ heirs all provide a full specification of the types involved, enabling stgeneric parameter
. BASEwillbe discussed
I type checking. Consider in particular the role ihie second generig, “THE BASE CLASS
parameterOPEN in ROUTINE [BASE OPEN —> TUPLE and its AND TYPE", 25.15,
descendantsPROCEDURE FUNCTION and PREDICATE OPEN Page 668
represents the tuple of types of all the open operands. In the first case
above, fow, only the last argument, of tyges, is left open; in the last case,
for z, all three arguments are open. (But in all examples so far the t@bget
is closed.) This immediately indicates what argument types are permissible
in calls tocall (oritemfor a function) on the corresponding agents:

w w. call ([e3)

aan x. call ([e2)

| y. call ([e2 e3)

z. call ([el, e2 e3)

658 AGENTS, ITERATION AND INTROSPECTION §25.8

where the types of expressioa§ e2 e3must conform tol'l, T2andT3
respectively. The effect of these calls is the same as what we would obtain
through the following normal calls (call time same as construction time):

a0.f(al, a2 el
ao. f (al, e2 a3
a0.f(al e2 el
a0.f(el ez ed

25.8 EXPLICIT TYPES FOR OPEN OPERANDS

As a variant of the “question mark” specification for open operands, you
might want to specify explicitly a certain type for some of the arguments.
Instead of the first example

Li] ‘W = a0~f (a1, a2 ?) ‘

you may write
‘Wu = a0~f(al, a2 {U3}) ‘

= specify that you are leaving open the last argument, and that the
corresponding actual must be of type conformint8 This will be called
the braces convention complementing the “question mark convention”
seen so far. In this case the typevofis

‘Wu: PROCEDURHTO, TUPLE[U3]]

Clearly, this is only permitted for a typd3 that conforms tar'3, the type

of the last formal argument. This is a general rule: where a normal call
requires an operand of tyfe a corresponding agent expression may use
{U;}, for any type U; conforming toT;. This means that the argument is
left open, and that any corresponding actual at call time must be of a type
conforming toU;.

We may now reinterpret the question mark convention in terms of the
braces convention: a question mark at an argument position is simply an
abbreviation for {;}, whereT; is the type of the corresponding formal. For
exampley, defined earlier ag0~f (al, ?, ?) could instead have been written

\ a0~f (aL {T2}, {T3})

§25.9 LEAVING THE TARGET OPEN 659

25.9 LEAVING THE TARGET OPEN

The examples of open operands seen so far were open only for some or all
of the arguments; the target was closed. Your may also want to leave the
target open. Looking again at our staple example, we see that if we start
from a normal call of the qualified form

I

‘ a0. f (a1, a2 ad

we cannot use the question mark convention to replace the &ggnce
we need to identify the class of whidhis a feature. But the braces
convention will work. You may write

I

‘ s:={T0} ~f (a1 a2 ad

to denote an agent open on its target (of tyi® and closed on all
arguments. Of course you can open any or all of the arguments too, as in

— _ — The expression far

| -‘J | t:={T0 ~f (al, a2 ?) can be abbreviated to
annad u:={T0~f(?,2,?) just{TO} ~f. See
| “COMPLETELY
OPEN AGENTS”

where we get withy, for the first time, an agent open on all its operan ¢ g6
target and arguments.

The types for the last call expressions are:

s. PROCEDURHTO, TUPLE[TO]]
t: PROCEDURHTO, TUPLE[TO, T3]
u: PROCEDURETO, TUPLE[TO, T1, T2, T3]

Note once again how the second generic parameter oRMETINE
classes corresponds to the open operands — target and arguments included.

The next section discusses the role of the first generic parameter, always
representing the target type.

The order of the open operands is the one in which these operands would
appear in a normal call: target, then first argument and so on. Calidlto
on the corresponding routine objects will be instructions of the form

s. call ([eQ)
t. call ([e0 e3)
u. call (JeQ el e2 e3)

with expressiong(, e, e2, e3of types conforming td0, T1, T2, T3. Note

how, when it comes to applyingall (or itemfor a function) to an agent, the
target, if left open in the call expression, must be passed as part of the actual
argument tuple, in the same way as an open argument.

660 AGENTS, ITERATION AND INTROSPECTION §25.10

These agent expressions will have the same effect as the normal calls

e0. f(al, a2 a3
e0. f(al, a2 eld
el. f (el e2 el

In the unqualified case, a normal call of the form

\ f(al, a2 ad \

may be viewed as an shorthand for the qualified f@unrent. f (al, a2, a3).
Correspondingly, you may write the open-target agent expression as

- CC s the enclosing
‘ {CC}~f(al a2 a3 ‘ class assumed to be

non-generic

but you may also use a question mark for the target:

\ ?2~f(al, a2 ad \

Here too you may of course leave some of the arguments open, or — The expression far

; can be abbreviated to just
them as in ?~f.“COMPLETELY
OPEN AGENTS”
‘ vi=2~1(2,27) ‘ 25.13, pae 666

25.10 ASUMMARY OF THE POSSIBILITIES

Although you may have the impression that the agent mechanism has - This only covers non-

; Y ; ; ; : inline agentsSee also
variants, it is in fact very simple. So to avoid any confusion, or IMPres. | |NE AGENTS”.

of confusion, here is an informal description listalgthe possibilities: 25.17, pae 675

How agent expressions are made
To obtain an agent expression, youst
1 - Startfromavalid routine call— of any form, qualified or na

2 < Replace the dot by a tildeif the call is qualified; otherwise,
add a tilde before the routine name.

In addition, to make some operands open,iyay

3 < Replace any operand(the target, or any argument) by
question mark, or a type in braces, aS\WUR_TYPE

4 - [f all the argumentsare question marks, omit the argument
list (and the parentheses) altogether.

—

[

That's all there is to it!

In the next sections we continue exploring the details, and study the
precise syntax, validity and semantics of agent expressions.

§25.11 TWO ADVANCED EXAMPLES 661

25.11 TWO ADVANCED EXAMPLES

We have now seen cases of all the variants of agent expressions, but before
proceeding to a detailed analysis of all their properties let's gain further
appreciation for the power and versatility of the mechanism by looking at
two interesting applications: error processing and “once per object”.

The first example addresses a frequent situation in which we perform a
sequence of actions, each of which might encounter an anomaly that
prevents continuing as hoped. The problem here is that it’s difficult to avoid
a complex, deeply nested control structure, since we may have to get out at
any step. The straightforward implementation will look like this:

actionl
if ok1then
action2
if ok2then
action3
... More processing, more nesting ...
end

end

For example we may want to do something with a file of nga_name

We first test that thapath_names not void. Then that the string is not
empty. Then that the directory exists. Then that the file exists. Then that it
is readable. Then that it contains what we need. And so on. A negative
answer at any step along the way must lead to reporting an error situation
and aborting the whole process.

The problem is not so much the nesting itself; after all, some algorithms
are by nature complex. But often the normal processing is not complicated
at all; it's the error processing that messes everything up, hiding the
“useful” processing in a few islands lost in an ocean of error handling. If
the error processing is different in each caset k1, not ok2and so on)
we can't do much about it. But if it is always of the form: “Record the error
source and terminate the whole thing", then the above structure may seem
unpleasantly over-complicated. Although we might use exceptions to
address the problem, they are often overkill.

An agent-based technique is useful in some cases. It assumes that you
write the various actions —actionl... action3above — as procedures,
each with a body of the form

...Try to do what's needed...
controlled_checKexecution_ok"...Appropriate message...")

662 AGENTS, ITERATION AND INTROSPECTION §25.11

with execution_okepresenting the condition that must be satisfied for the
processing to continue. Then you can rewrite the processing above as just:

controlled_executf
~ actionl,
~action2(...),
~action3(...)
D
if controlled_glitchthen
warning(controlled_glitch_messaye
-- Proceduravarningis an error reporting mechanism
end

This linear structure is much simpler than the original.

The features whose names start witintrolled_come from the EiffelBaseThe routine as it appears
classCONTROLLED EXECUTIONfwhich the class containing the abog‘xg‘aei:'g{ﬁ:émss"’t‘gew
scheme should be a descendant. These procedures are not difficult tOrecordthe glitch stepand
for ~ example controlled_check sets controlled_glitcth and onoptionraise anexcep-

controlled_glitch_messagandcontrolled_execut®okslik e this tion.

controlled_execute
(actions ARRAYYPROCEDURHEANY TUPLH]) is
-- Executeactions stopping if encountering a glitch.
local
i: INTEGER
do
from
controlled_glitch:= False i := actions lower
until i > actions upperor elsecontrolled_glitchloop
actionsitem.call ([])
=i+l
end
end

The second example, also supported by an EiffelBase class, provid- For an introduction
elegant “once per object” mechanism. You know, of course, Eiffetee E%g”ﬁ%ﬁgg‘g;sfe
routines”, executed only once per system execution. They define a ‘s.6, pae 270

per class” mechanism: all instances of a class share the result of a

function. (All these concepts are applicable to procedures, but for

discussion we restrict ourselves to functions.) Now assume you ..ccu

functions that compute a result specifric to each instance of the class, and

computed just once for that instance, the first time it's requested — if at all.

A typical application would be large pieces of information associated with

objects of a certain type, but stored in a database; for example each instance

§25.11 TWO ADVANCED EXAMPLES 663

of a class COMPANY may have stock_historyinformation, of type
HISTORYwhich may be huge. We only want to retrieve the information on
demand; given the size of the information and the number of instances of
the class, it is not acceptable to load everything ahead of time. Even if an
instance ofCOMPANYis in memory, we want to retrieve the associated
HISTORYfrom the database only when and if we need access to the
company'sstock_history

Agents provide us with a general solution to all problems of this kind.
In classCOMPANYyou will simply declare

\ stock_historyONCE_PER_OBJEC[HISTORY \

and obtain the value, when and if needed, as

’ stock_historyitem (~ retrieved_history ‘

Hereretrieved_histonyis the function that computes the needed result —
the one that you want to call once for each object. That's all you have to do!
Note that this scheme allows you to have as many “once per object”
functions as you like in any given class. It relies on a general-purpose
EiffelBase clas©NCE_PER_OBJEC®f the following form:

expanded class
ONCE_PER_OBJE(T]
feature -- Access
item (f: FUNCTION[ANY, TUPLE, G]): Gis
-- Value off, computed once for each object;
-- subsequent calls return same value for same object.
do
if not computed then
internal_result=f.item([])
computed= True
end
Result= internal_result
end
feature {NONE -- Implementation
computedBOOLEAN
-- Has item already been requested?
internal_result G
-- Result, if already computed
end-- classONCE_PER_OBJECT

664 AGENTS, ITERATION AND INTROSPECTION §25.12

25.12 AGENT EXPRESSION SYNTAX

We have now seen examples of all the variants of agent expression, Sfhiirried skip to
Ef %, time to give the syntax. (This section introduces no new concept, SCCOMPLETELY

hurried reader may skip to the next one.) SEENLASENTS
25.13, pae 66¢

The new construct isgent, a variant ofExpression

Agent £ Feature_ageftnline_agent
Feature_ager® [Agent_targdtAgent_unqualified
Agent_unqualified® "~" Feature_namfgent_actuals Agent_actualeepresents
.)) the actual argumenti
Agent_target® Entity | ParenthesizejdType_descriptor any to the agentand is

specified next

Type_descripto Explicit_type_descriptdPlaceholder
Explicit_type descripto® "{" Type"}"
Placeholde2 "?"

The construct of interest for the momenFisature_agentorresponding tCINLINE AGENTS”,

the tilde form. The inline forminline_agents studied in @&eparatesection. 25:17. pge 675Rou-
tine agents use a verti-

i The major difference between the syntax df@ature agerand of a cal barl
normalCall is the tilde of anAgent_unqualifiedwhich has no equivalent
in the corresponding constru¢tinqualified_call This guarantees that an
agent expression can never be confused for a normal call.

Note that the mechanism is applicable not only to identifier features_“t&ature Name Con-
also to operator featureg(ix andPrefiY). The technique is very simplesistency principlepage
just designate the feature by Eeature_namend add a tilde to it as y012f03

would do with an identifier featuré/ou may remember that the Featul -

Name Consistency principle allows us, §fis the operator of an infix

feature, to treainfix "§8" as a normal feature name and use it in any place

where a feature identifier would be legal; same thingpi@fix "1" if fis

a prefix operator. So you can use agent expressions such as

I d I a~infix "+" (b) -- All closed

~infix "+" (?) -- Open on argument, closed on target
] ?~ prefix "+" -- All open (open on target, no argument)

Coming back to the general case, thkgent_targemay be absent, in which

case the call will be considered closed on its target: the current object. In this
case the associated feature must be a feature of the current class, and the
Feature_agemill start with a tilde and a feature name, as in

~f (al, a2 ajd
] ~f

§25.12 AGENT EXPRESSION SYNTAX

665

(4

®

METHON]

«..'.‘er:.'

In all other cases the agent expression has an expligint_targetfor
which the specification shows three possibilitiestity, Parenthesizeand
Type_descriptorExamples of @gent_targeof each kind are

e0 -- An Entity
(@ k (X)«I (y)« m) -- A Parenthesizecbntaining a complex expression
{U0} -- A Type_descriptofexplicit)

This syntax requires you, if you want to use as target an expression other

than a simple entity, to enclose it in parentheses, as in the second example.

There is no loss of expressiveness, since the expression you put in
parentheses can still be as complicated as you like. The reason for forcing
parentheses is a concern for readability. With suitable precedence rules, it
would not be hard for a compiler to paraek (x). | (y). m~f (al, a2, a3).
Instead, you must write

I%l

](a. k).l (y).m~f(al a2 ad \

where the parentheses around the target remove any confusion arising from
the presence of both dots (part of the multi-level qualifizdl serving as
target of the agent expression) and tildes.

The third possibility for a target includesTgpe_descriptorThis may
be anExplicit_type_descriptolisting the target type in braces:

-

\ {TO}~f (a1, a2 ad \

or simply a question mark, calledr”iaceholderindicating an open target
of the current type:

-

BTN TAL

‘ ?2~f(al, a2 ad ‘

This expression assumes thais a feature of the enclosed class; it
represents an agent that is open on its target.

The part after the tilde is what the syntax productions call
Agent_unqualifiedwhich resembles th&nqualified_callcomponent of
normal calls, but with two more possibilities for agent_actual

Agent_actual$® "(" Agent_actual_list)"
Agent_actual_lis® {Agent_actual," ...}
Agent_actual® Actual | Type_descriptor

One of the variants oAgent_actuais Actual, meaning a normal actual
argument for a callExpressioror, for an external routinejddres$. The
new variantislype_descriptqicovering two formsPlaceholdefa question
mark) andexplicit_type_descriptora type in braces.

666 AGENTS, ITERATION AND INTROSPECTION §25.13

Ll

We can define precisely what “open” and “closed” mean for ‘" The operands of a

operands of an agent expression: call were defined on
page651as including
ot its target and its argu-
‘—l—‘ Open and closed operands ments if any
The open operandsf aFeature_agerinclude:

 |Its target if there is a\gent_targetand it is aType_descriptor
(Explicit_type_descriptoor Placeholdex

» Any Agent_actuathat is alype_descriptor
Theclosed operandsnclude all non-open operands.

An earlier definition also introduced the notionagerand position which . “oOperand position”

we can now extend to a definition of open and closed positions: was defined on pagis 1
the target position is,0
Clilad, it and the argument posi-
T Open and closed operand positions fons st ot 1
Theopen operand positionsof a Feature _agerdre the operand

positions of its open operands, and thesed operand positions
those of its closed operands.

25.13 COMPLETELY OPEN AGENTS

In some cases it will be useful to write an agent expression that denotes an
an agent open on all of its arguments, and possibly on its target too.

We have seen how to obtain this effect by using question marks
(Placeholdérat every argument position:

—f£(> 2 o _ PP « The first expression
| d | a0~f(?2,?,?) Quallflgq, arguments open, target closed was callecton page57
e ~f(?,?2,?) -- Unqualified, arguments open, target closed thesecondonewascalled
] v on pages60

An abbreviation is permitted for this case: omit the parenthesized argument
list (theAgent_actualpart) altogether, yielding respectively

a0~f -- Qualified, arguments open, target closed
~f -- Unqualified, arguments open, target closed

These examples all have closed targets; in the unqualified case the target is
the current object. The fully open variants, with open targets, are:

~ The first expression

{TO}~f -- Qualified, all operands open (target and arguments) - .= 0 00 as
?~f -- Equivalent to previous oneT0 is current type defined on pagé59

§25.14 ACCESSING FEATURE PROPERTIES 667

The syntax just given explicitly allows all these abbreviated forms. It iS.~The Argument rule
same as the full form ifhas no arguments; butfihas arguments, a norm\¥as on pagé4a

call without actuals, such @f. f, or justf in the non-qualified case, woul- The Agent Expres-
violate the Argument rule. In contrast, theAgent Expressionrule, poris """ PPN
introduced later in this chapter, explicitly allows you to omit tne
Agent_actualseven for a feature with arguments, as an abbreviation for a

list of completely open actuals.

This abbreviated form has the advantage of conveying the idea that the
@ denoted agent is a true “feature object”, carrying properties of the feature
I in its virginal state, not tainted by any particular choice of actual argument.
The last two variants shown do not even name a target. This is the kind of
object that we need for sucéhtrospectiveapplications as writing a system
that enables its users to browse through its own classes.

25.14 ACCESSING FEATURE PROPERTIES

As part of introspection support, clagUTINE and its descendants
provide features to access the precondition and postcondition of a routine:

precondition(args OPEN BOOLEAN
-- Do args satisfy routine’s precondition in present state?

postconditionargs OPEN BOOLEAN
-- Does current state satisfy routine’s postcondition
-- for operandsrgs?

This enables you to check the precondition before you apply an agent, asin

if your_agentpre (your_operandsthen
an your_agentcall (your_operands
I end

whereyour_agentis an agent expression arygur_operandss a valid
tuple of operands for that agent.

There is, as will be seen next, a similar facility for class invariants.

668

AGENTS, ITERATION AND INTROSPECTION §25.15

25.15 THE BASE CLASS AND TYPE

T

Introspection support is also one of the concerns behind the first generic
parameter 0ROUTINE PROCEDURE FUNCTION and PREDICATE
The specification

[ROUTINE[BASE OPEN-> TUPLH

includes, as first generic parameter, the t#eSErepresenting the type. Although intuitively
(class with generic parameters) to which an ageagsociatedeature clear, the notion of

e “associated feature” of
belongs. This is the type of the target expected by the feature. an agent has not yet

The examples seen so far do not B#eSEat all, because procedutall been defined precisely

does not need it. If the agent is closed on its target, as in The definition is part of
the Agent Expression
ly:=a0~f(aL,??) | rule pagessl

then it includes, here throud®, the target information that a later call to
call may require. In the other case — open target — as in

[t:={T0}~f(al, a2 ?) |

then the target type is specified, hérg, and provides the information
needed to determine the right versionfofn this case th&ASEgeneric
parameter is in fact redundant, since it is identical to the first component of
the tuple type corresponding@PEN the type of, for example, is

ROUTINE[TO, TUPLE[TO, T3]

where the two tuple components correspond to the two open operands: the
target, and the last argument.

In both the closed target and open target cases, then, we don't need the
BASEgeneric parameter if all we do with agents is execalleon them.

BASEis useful for other purposes. WithoBASEa call closed on its
target, as withy above, could not contain any information about the class
(and associated type) where the call’'s associated feature is defined. To open
the gate to fullintrospectionservices — enabling a system to explore its
own properties — cladlROUTINEuses a feature

| base_typeTYPE[BASH |

that yields the type to which the agent’s feature belongs. CMdBE[G] from
the Kernel Library provides information about a tgpand its base class.

ClassTYPEis, even more fundamentally th&OUTINEand its heirs,
the starting place for introspection. Example features include:

* name STRING the upper name of the type’s base class.
« generics ARRAY[TYPE[ANY]], the actual generic parameters, if any,
used in the type’s derivation.

« routines ARRAY[ROUTINE[ANY TUPLE]], the routines of a class,
each an instance ®8ROCEDUREFUNCTIONor PREDICATE

§25.16 USING AGENTS 669

« attributes ARRAYFUNCTION[ANY]], the attributes.

e invariant (obj: G): BOOLEAN telling us whether an instanoebj
satisfies the invariant.

ClassANYhas a feature ~ OnANYand uni-
. versal features see
| generator TYPE[like Curren{ chapter30.

which yields an object describing the type of the current object.

So within a class of whicli is a featuregeneratorhas the same value as
(=f). base_typgif ais of typeT andf is a feature off, thena.generatorhas
the same value 4§T} ~f). base_type

A more complete interface specificationlof PEappears in the descriptio= on classTYPEsee
of the Kernel Library classes. A.6.30, pge 900

Thanks to the presence ®&ASEamong the generic parameters
ROUTINEand its descendants, we can give a proper typpase typeand
as a result gain access to a whole library of introspection mechanisms.

25.16 USING AGENTS

=

I

—

All the details of the agent mechanism have now been introduced, alth= Vafidity and seman-
we haven't yet taken the trouble to look at tiaidity rulesand precise tics are in the next sec-
semantics. We should now revisit and extend the examples sketched ™™ 22-19.-22¢ 680
very beginning of this chapter and see how to make them work in pracu...

not just the client side (integrating a function, iterating an operation) but the

suppliers too (the integrator, the iterators).

The first set of examples was about integration. We assumed functions

g (x: READ: REAL
h(x: REAL a T1 b: T2): REAL

and wanted to integrate them over a real interval such as [0, 1], that is to
say, approximate the two integrals

Ix:O g (x) dx Ixzo h (x, u, v) dx

We declare

‘ your_integrator INTEGRATOR ‘

and, with the proper definition of functiantegralin classSINTEGRATOR
we will obtain the integrals through the expressions

your_integrator integral (~g (?), 0.0, 1.0)
your_integrator integral (~h (?, u, v), 0.0, 1.0)

670 AGENTS, ITERATION AND INTROSPECTION §25.16

The question mark indicates, in each case, the open argument: the place where
integral will substitute various real values fowhen evaluating or h.

Note that if we wanted in clas® to integrate a real-valued function
from classREAL, such asbswhich is declared iREALas

abs REALis
-- Absolute value
do...end

we would obtain it simply through the expression

|) | ’your_integratorintegral ({REAL ~abs 0.0, 1.0

Let us now see how to write functiomtegral to make all these uses
possible. We use a primitive algorithm — this is not a treatise on numerical
methods — but what matters is that any integration technique will have the
same overall form, requiring it to evaludtéor various values in the given
interval. Here classINTEGRATORwill have a real attributestep
representing the integration step, with an invariant clause statingttyat

is positive. Then we may wrifategral as:

A integral
T (f: FUNCTION[ANY TUPLE[REAL, REAL;
| low, high: REAL): REALis
-- Integral off over the intervallpw, high]
require
meaningful_intervallow <= high
local
x: REAL
do
from
X := low
invariant

x>=low; x<=high+ step
-- Resultapproximates the integral over
-- the interval [ow, low. max(x — step]

until x> highloop
Result= Result+ step 0| f.item([X])
X:=X+ step

end

end

§25.16 USING AGENTS

671

The boxed expression is where the algorithm needs to evaluate the function
f passed tantegral. Remember thatem, as defined in clasSUNCTION

calls the associated function, substituting any operands ghate¢he open
positions, and returning the function’s result. The argumeit¢ofis a tuple

(of type OPEN the second generic parameter&fNCTION); this is why

we need to enclosein brackets, giving a one-argument tupié:

In the first two example uses;g (?) and ~h (?, u, V), this argument
corresponds to the question mark operandsaiodh. In the last example the
call expression passeditdegralwas{ REAL ~ abs where the open operand
is the target, represented PREAL}, and successive callsitemin integral
will substitute successive valuesxads targets for evaluatiraps

In the case oh the closed operandsandv are evaluated at the time of
the evaluation of the agent expressidr(?, u, v), and so they remain the same
for every successive call temwithin a given execution afitegral.

Note the typeFUNCTION[ANY TUPLE [REAL, REAL declared in
integral for the argument. It means that the corresponding actual must be
a call expression describing a function from any class (hence the first actual
generic parameteANY) that has one open operand of tyREAL (hence
TUPLE[REAL) and returns a real result (henR&AL). Each of the three
example functiongy, h and abs can be made to fit this bill through a
judicious choice of open operand position.

Now the iteration examples. In a cla8€ we want to manipulate both
a list of integers and a list of employees

I

intlist: LINKED_LIST[INTEGER
emplist LINKED_LISTIEMPLOYER

and apply the same functiéor_all to both cases:

|

if intlist. for_all (~is_positive(?)) then ... end
if intlist. for_all (~over_threshold?)) then ... end

if emplist for_all { EMPLOYEE ~is_married then ... end

The functionfor_all is one of the iterators defined in claBRAVERSABLE

of EiffelBase, and available as a result in all descendant classes describing
traversable structures, such BREEand LINKED LIST This boolean-
valued function determines whether a certain property holds for every
element of a sequential structure. The property is passed as argument to
for_all in the form of a call expression with one open argument.

672

AGENTS, ITERATION AND INTROSPECTION §25.16

Our examples use three such properties of a very different nature. The first
two are functions of the client clagsC, assessing properties of their
integer argument. The result of the first depends only on that argument:

is_positive(i: INTEGER: BOOLEANiIs
-- Isi positive?
do Result= (i > 0) end

Alternatively the property may, as in the second example, involve other
aspects o€C, such as an integer attributeeshold

over_thresholdi: INTEGER: BOOLEAfsNs
-- Isi greater thathreshol®
do Result= (i > threshold end

Hereover_thresholdompares the value ofo a field of the current object.
Surprising as it may seem at first, functifmm_all will work just as well in

this case; the key is that the call expressi@ver_threshold?), open on

its argument, is closed on its target, the current object; so the agent object
it produces has the information it needs to accesthitbsholdfield.

In the third case, the argumentfty_all is{EMPLOYEE ~is_married
this time we are not using a function 6fC but a functionis_marriedfrom
another clasEMPLOYEE declared there as

‘ is_married BOOLEANis do ... end ‘

Unlike the previous two, this function takes no argument since it assesses
a property of its target; We can still, however, pass ifoio all: it suffices
to make the target open.

The types of the call expressions are the following:

PREDICATECC, TUPLE[INTEGER]
-- In first two examplesig§_positiveandover_thresholl

PREDICATHEMPLOYEE TUPLE[EMPLOYEH]
-- In thels_marriedexample

Thisassumes againthat
CCis non-genericso
that it is both a class
and a typeRemember
thataPREDICATHs a
FUNCTIONwith a
BOOLEANresult type.

You may also applyfor_all to functions with an arbitrary number of
arguments, as long as you leave only one operand (target or argument) open,
and it is of the appropriate type. You may for example write the expressions

intlist . for_all (~some_criterior(el, ?, €2 e3)
emplist. for_all { EMPLOYEERE ~some_functioife4, e5

§25.16 USING AGENTS 673

assuming irCC andEMPLOYEE respectively, the functions

some_criterioal: TL i: INTEGER a2 T2 a3 T3 --InCC
some_functiofa4: T4; a5 TH) -- In EMPLOYEE

forarbitrary typed'l, ..., T5. Since operandsl, ...,e5are closed in the calls,
these types do not in any way affect the types of the call expressions, which
remain as above:PREDICATE [CC, TUPLE [INTEGER] and
PREDICATHEMPLOYEE TUPLE[EMPLOYEH].

Let us now see how to write the iterator mechanisms themselves, such
asfor_all. They should be available in all classes representing traversable
structures, so they must be introduced in a high-level class of EiffelBase,
TRAVERSABLIEG]. Some of the iterators are unconditional, such as

mMEETHON]
L)

do_all (action ROUTINE[ANY TUPLE[Q]]) is
-- Apply actionto every item of the structure in turn.
require
... Appropriate preconditions ...
do
from startuntil offloop
action.call ([item])
forth
end
end

This uses the four fundamental iteration facilities, all declared in the rDescendants afRA-
general form possible ageferredfeatures iNTRAVERSABLEStart to /ER>ABLEflect ihese
e eaturesmvarlousways
position the iteration cursor at the beginning of the structiweth to o provide iteration
advance the cursor to the next item in the structaffdp tell us if we havemechanisms on lists
exhausted all itemspt off is a precondition oforth); anditemto return Nash tablestrees and

X " many other structures
the item at cursor position.

The argumentaction is declared afROUTINE [ANY, TUPLE [G]],
meaning that we expect a routine with an arbitrary base type, with an open
operand of typeG, the formal generic parameter AGiRAVERSABLE
representing the type of the elements of the traversable structure. Feature
itemindeed returns a result of tyge (representing the element at cursor
position), so that it is valid to pass as argument the one-argument tuple
[iten] in the callaction. call ([item]) that the loop repeatedly executes.

We normally expecactionto denote a procedure, so its type could be more
accurately declared &ROCEDURHANY TUPLE[G]]. UsingROUTINE
leaves open the possibility of passing a function, even though the idea of
treating a function as an action does not conform to the Command-Query
Separation principle of the Eiffel method.

674

AGENTS, ITERATION AND INTROSPECTION §25.16

Wheredo_all appliesactionto all elements of a structure, other iterators
provide conditional iteration, selecting applicable items through another

call expression argumertést Here is the “while” iterator:

I%

while_do
(action ROUTINE[ANY TUPLE[G]]
test PREDICATHANY TUPLE[G]]) is
-- Apply actionto every item of structure up to,
-- but not including, first one not satisfyitest
-- If all satisfytest apply to all items and moaf.
require
... Appropriate preconditions ...
do
from startuntil
off or else nottestitem ([iter)
loop
action. call ([item)
forth
end
end

Note how the algorithm appliesall to action representing a routine
(normally a procedure), anidem to test representing a boolean-valued
function. In both cases the argument is the one-element][ttgote.

The iterators of TRAVERSABLEcover common control structures:
while_dq do_while (same aswhile_dobut with “test at the end of the
loop”, that is to say, applgctionto all items up tcand includingfirst one

satisfyingtes); until_dg do_untit do_if.

Yet another of the iterators GRAVERSABLIE for_all, which we used
in the examples. It is easy to writefar_all loop algorithm similar to the
preceding ones, but easier yet to defareall in terms ofwhile_da

require

do

end

for_all (test PREDICATHG, TUPLE[G]]): BOOLEANs
-- Do all items satisfyes®

... Appropriate preconditions ...

while_do(~do_nothingtes)
Result= off

Procedurelo_nothingfrom classANY has no effect; here we simply app™ do_nothings cited

it as long agestis true of successive items. If we find ourselwdbthen in 30.6. pae 796
for_all should return true; otherwise we have found an element

satisfying thdest

§25.17 INLINE AGENTS 675

Assuming a proper definition oflo_until the declaration ofexists
providing the second basic quantifier of predicate calculus, is nicely
symmetric withfor_all:

4

exists(test PREDICATHG, TUPLE[G]]): BOOLEANs

-- Does at least one item satiség®

require
... Appropriate preconditions ...

do
do_until(~do_nothingtes)
Result= not off

end

25.17 INLINE AGENTS

Agents as seen so far do not name their open operands, representin~is_positivemeans the
instead by question marks iris_positive(?), by a type in braces ifSameasis_positve?).
{EMPLOYEER ~is_married or just leaving them implicit iris_positive

As previewed at the beginning of this chapter there is also an inline
variant, where you name the open operands. Its distinctive mark is the
vertical bar. Two examples defining function agents are

(i: INTEGER] is_positive(i))
(e EMPLOYEH e.is_married

equivalent respectively teis_positive(?) and{ EMPLOYER ~is_married

The outermost parentheses are not part of the syntaiifoe_agentbut will

be included in the examples for clarity. The common case of using an inline
agent as routine argument requires parentheses anyway, as in

‘ emplist. for_all (& EMPLOYEH e.is_married ‘

You may include two or more open operands of the same type, as in

-

‘ (e, f: EMPLOYEH e.salary> f.salary) ‘

which represents a boolean-valued operation that, given two objects of type
EMPLOYEE returns true if and only it the quesalary yields a higher
result for the first than for the second.

For operands of different types, use successive vertical bars:

-

‘ (e, : EMPLOYEH p: POSITION| (e.job = p) and (f.job = p)) ‘

These were all examples definifignction agents; accordingly, the part
after the vertical bar was an expression. It is also possible to define inline
procedureagents; in that case the definition uses one or more instructions

676

AGENTS, ITERATION AND INTROSPECTION §25.17

enclosed in the keywordio ... end, as in the following example, using an
inline agent passed as argument to an iterator, which will raise by 10
percent the salary of every employee of first name “Bertrand”:

emplistdo_all (e EMPLOYEH - Definingthe stringas
do onceis not strlctly nec-

. . " ; essary butimproves per-
if equal (efirst_namepnce"Bertrand’) then formance by avoiding
e.set_salary (1.1le.salary) repeated evaluations;

se€'Once strings and
end the semantics of mani-

end) fest strings”, pae 704

Inline agents do not give us anything fundamentally new, since we can
always rewrite them as non-inline agents — of the form discussed in
preceding sections, using tildes — after defining appropriate functions. For
example we can rewrite the next-to-last one asame_job or
~same_jol(?, ?, ?), with the function definition

same_jok{a, b: EMPLOYEE pos POSITION: BOOLEANis
-- Do a andb both have positiopos?
do
Result= ((a.job = pog and (b.job = pog)
end

Although this tells us that in principle we could do without inline agents,
they are useful if you want to avoid writing functions suchsasne_job
when their only purpose is to define agents.

This case arises in particular for agents that express advanced contract
specifications. Here is a typical example. Assume that in a class describing
sequentially extendible structures (such.EST[G]) you write a procedure
that appends an element. It might include a postcondition as follows:

extendx: G) is
-- Add x at end; keep other items
require

do

ensure
one_morecount= old count + 1
added_at_endtem(coun) = x
others_unchangedl |..]old coun).for_all

(i: INTEGER] item (i) = (old twin). item (i))
end

§25.17 INLINE AGENTS

677

In the last postcondition clause — the one of interest for this discussion —
1|..|old countis the interval from 1 t@ld count to whose itemsor_all
applies the agent property on the following line. The property expresses
that the item at position for arbitraryi, is equal to the original item at that
position (more precisely, to the item at position old twin, a copy of the

list taken on entry to the procedure). This is typical of how agents enable
us to express non-trivial postcondition or invariant properties, stating that
a whole set of items have not changed, or have a certain association with
the corresponding set of items in another structure.

We could restate the inline agent (the argumerfiotoall) in non-inline
form as~equal_item(old twin, ?), but this assumes a function

I

—0

equal_iten(l: like Current i: INTEGER: BOOLEANis
-- |s item at positiom equal to corresponding onelih
do
Result= (item(i) =1.item(i))
end

If you want to specify your software completely — expressing not only
straightforward properties suchigasm(coun) = x, but also those involving
entire substructures — you may end up writing many such functions.
Although they add interesting information, one may also feel that, being
only used for assertions, they needlessly complicate the class. They may
destabilize the software since any effort at better specification may cause
the addition of a whole set of new features, used only in the assertions and
of no other interest to clients of the class. Inline agents solve this problem.

Here is another example application of inline agents. The agents
described in this chapter represent delagelis, you may have wondered
whether we also need an expression construct to denote deddyect
creation perhaps something like create{ SOME_TYPE.make(al,?).

The answer is no, since we can achieve the intended effect (assuming we
need it) by using a creation expression as part of an inline agent in

I

\ bl: B| create{ SOME_TYPE.make(al, bl) \

whereB is the type ofmakes second argument.

Inline agents, such dslike Current|i: INTEGER]| item (i) = I.item (i),
are like little routine declaration; in fact we could call themonymous
routines, similar to anonymouslassegtuple types) and anonymoabjects
(tuples). It's as we had writteequal_iteninline and without a routine name.

Inline and non-inline agents, however, are not completely
interchangeable. More precisely, every inline agent has a non-inline
equivalent (illustrated in the last example by the form usngal_iten);
but the converse is not always true, because inline agents only provide a
restricted form of anonymous routine.

678

AGENTS, ITERATION AND INTROSPECTION §25.18

In particular, an explicit (non-anonymous) routine suclegsal_item
may have, apart from argument declarations an&aatine_body(do
clause), other clauses such Rzcondition Postconditiorand Rescue An
inline agentargs SOME_TYPHexprcan only specify its operandsgsand
aresultexpressionequivalent to @o clause with a single instruction of the
form Result:= expr. If you want anything else — assertions, or exception
handling — you must write a non-anonymous routine sucacasl_item
and use it to define a non-inline agent.

25.18 SYNTAX, VALIDITY AND SEMANTICS OF INLINE AGENTS

;_3.
A

We have now seen all the agent-related mechanisms; there remains to study
the precise validity and semantics. This will introduce no new concept, so
on first reading you may skip to the next chapter.

Itis convenient to start with inline agents by showing how to define their
validity and semantics in terms of the more general case, non-inline agents,
detailed in the next sections. Here is the syntax of inline agents,
distinguished by the vertical bar

I BTNTAX

Inline_agent2 [Agent_formal$"[" Inline_body
Agent_formals2 {Entity_declaration_grouf" ...}*
Inline_body £ {Expressior} Inline_procedurk”
Inline_procedure? do Compouncend} ™

Entity_declaration_groypa construct seen in théiscussionof routines, .. page266
represents sequences of entities followed by a colon and a type name

I%

’ath

This serves to declare the listed entities as being offtype

You may not use aientity _declaration_listwhich could involve more
than oneEntity_declaration_grouand hence more than one type, as in
a, b: T1, ¢ T2, since this would be ambiguous (at least to the human
reader); but you can obtain the same effect by using successive groups
separated by vertical bars, as in the inline agent

£

==

\ a, b: INTEGER| c. REAL|a+ b>c

Note that theAgents_formalds optional: you may define agents without
formal arguments, such as

lp+qg>r -- wherep, g, r are queries of the class
| create{ SOME_TYPE.make(some_entity
| f -- wheref is a query of the class; same meaning &s

§25.18 SYNTAX, VALIDITY AND SEMANTICS OF INLINE AGENTS 679

Some terminology will be useful

; : T “Formal argument”
Formal arguments, defining expression of an inline agent ecaiis the connection

. with routines “oper-
Theformal arguments (or operands of an inline agent are th and”, the opsen %per_

entities listed in anyntity declaration_grougf its Agent_formals ands of an ageno
part. Itsbody is itsInline_bodypart. both names are useful

This enables us to consider that an inline agent is derived from an
anonymous routine:

Associated routine of an inline agent

Theassociated routineof an inline agenia is a fictitious routine
r, declared in the enclosing claSas follows:

* The name of is chosen not to conflict with any other feature

name inC and its descendants.

» The formal arguments ofare the same as thoseiafif any.

« If the body ofia is an Expressionexp thenr is a function
whose result type is the type efp and whose body is of
the do form, containing the single instructidResult:= exp
and has none of the optional clause®rgcondition
PostconditionRescug

» Otherwise the body ofa is anInline_procedureandr is a
procedure whosBoutine_bodys the body ofa.

This definition allows us to treat inline agents like non-inline ones

Non-inline form of an inline agent

The validity and semantics of an inline ageat are those
of its non-inline form: the agent~ af, where af is ia’s
associated routine.

This will spare us the need to define the semantics of inline agents; we can
just rely on the next section’s specification of the non-inline case.

This approach is applicable to the validity rule as well; but he.Formal Argument
to enable compilers to provide directly usable messages in cad!!e-Page266
an erroneous inline agent, it is useful to provide a direct rule,
derived through the above definitions from th®rmal Argument
rule of routines:

680 AGENTS, ITERATION AND INTROSPECTION §25.19

Inline Agent rule CPIA

An Inline_agenta appearing in a clagSis valid if and only if the
list of identifiers formals obtained by concatenating every
Identifier_list of every Entity _declaration_groujn the Agent
formalspart ofia, if any, satisfies the following two conditions:

1 +No Identifier appears twice formals

[EALininy

2 *No Identifier e appearing informalsis the final name of a
feature ofC, or of a formal argument or local entity of the
enclosing routine if any.

The validity of thelnline_bodypart doesn’t require any particular rule; it °= “Entity rule”
covered by theEntity rule, which states that any entity appearing in Page 517
Inline_bodymust be a formal argument of the inline agent itself (such

andi in I: like Current|i: INTEGER| item (i) = |.item (i)) or otherwise

legal from the context (feature of the enclosing class, formal argument or

local entity of the enclosing routine).

25.19 VALIDITY AND SEMANTICS OF FEATURE AGENTS
4 It remains to provide the validity and semantic rules of non-inline agent

F,

4= Y% expressions, complementing the syntax already given. This material may,
like the previous section, be skipped on first reading.

For ease of reference heraisepetition of the syntax productions: . These productions

METEIENN Feature_ager® [Agent_targdtAgent_unqualified Zggﬁﬁégd onpages
Agent_target? Entity | Parenthesizeldlype_descriptor
Type_descripto Explicit_type_descriptdPlaceholder
Explicit_type_descripto® "{" Type"}"
Placeholde2 "?"
Agent_unqualified® "~" Feature_namf\gent_actuals
Agent_actual$® "(" Agent_actual_list)"
Agent_actual_lis€ {Agent_actual,” ...}
Agent_actual® Actual | Type_descriptor

To define the validity of an agent expression we need to be able to consider
its “target type”, explicit or implicit:

[usrsirios] : ~ The “current type”
Target type of an agent expression is the enclosing class
R with generic parameters
| The target t.ype of Reature_agernis: o added if necessary to
1 «If there is noAgent targetor an Agent_targetwhich is a make up a typsSee
Type_descriptoof thePlaceholdekind, thecurrent type. %1
2 «If there is aAgent_targeaind it is anEntity or Parenthesized TYPE”, 12.8 page384
its type.
3 «If there is aAgent_targetand it is aType_descriptoof the
Explicit_type descriptokind, the type that it lists (in braces)|

§25.19 VALIDITY AND SEMANTICS OF FEATURE AGENTS 681

This is enough to introduce the validity rule, which also defines the notion
of “associated feature” of an agent expression:

Agent Expression rule CPAE

e A Feature_agerdppearing in a clags, with a feature identifier
fi and target typerO, is valid if and only if it satisfies the
following six conditions:

1 «fi is the name of a feature @f0, called theassociated feature

of the agent.
2 «If there is @Agent_targetthat feature is export-valid farOin C.
3 «If the Agent_actualpart is present, the number of elements
its Agent_actual_lisis equal to the number of formalsfof
4 « Any Agent_actuabf the Actualkind is of a type conforming tg
the type of the corresponding formalfin
5¢Any Agent_actual which is a Type_descriptor of the
Explicit_type_descriptokind lists, between the braces, a type
conforming to the type of the corresponding formdl in
6 «If TOis separate, any non-expanded formdlisfseparate.

n

Clauses is a consistency condition for concurrent computation, and parallels
a similar clause discussed in the chapter on normal calls.

@ The rule’s phrasing makes certain forms of the construct automatically valid:

« If any Agent_actuais of thePlaceholdekind, represented simply by a
question mark, neither claugenor clauses applies, so the argument
raises no type validity problem. This is as expected, since such an
argument is left open for future filling-in.

« If there is noAgent_actualpart, clause8 to 5 do not apply. Iff has no
formals, we are calling an argumentless feature with no actuals, as we
should. Iff has one or more formal arguments, we view the absence of
explicit actuals of an abbreviation for actuals that are all of the
Placeholdekind (question marks): assumirigakes three arguments,
a0~f is simply an abbreviation foaO~f (?, ?, ?). In this case the
implicit arguments are all open, and hence automatically valid.

We may formalize the last observation through a definition which will also
be useful for the semantics:

Unfolded form of an agent expression

The unfolded form of &eature_agerdcis:

« dcitselfifitincludes anAgent_actualpart, or if the associated
feature has no formals.

e Otherwisedc extended with a&Agent_actualgpart made ug
of the appropriate number éfgent_actuacomponents, al
of thePlaceholde(question markkind.

682

AGENTS, ITERATION AND INTROSPECTION §25.19

Type and value of an agent expression

Consider aFeature_agend, whose associated featufehas a

generating typd 0. Letil, ..., im (m = Q) be itsopenoperand

positions, if any, and lefj,, .., Tj,, be the types of's formals at

positionsil, ..., im (takingTj; to beTOif i1 = 0).

The type ofd is:

« PROCEDURHTO, TUPLE([Tjs, .., Tiy] if fis a procedure;

* FUNCTIONI[TO, TUPLE[Tjq, .., Tinl, Rl if is a function of
result typeR.

Evaluatingd at a certainrconstruction timeyields a reference to

aninstanc®0of the type ofl, containing information identifying:

o f.

» The open operand positions.

e The values of the closed operands at the time of evaluatidn

Effect of executingcall on an agent

Let DO be an agent object with associated featlisnd open
positionsil, ...,im (m= 0). The information irD0 enables a call
to procedurecall, executed at angall time posterior toDO's
construction time, with targeD0 and (if required) actual
argumentsyq, .., ay,, to perform the following:

» Produce the same effect as a call,tosing the closed operands

at the closed positions amgl, .., &y, evaluated at call time, &
the open positions.

» Inaddition, iff is a function, setting the value gfierylast_result
for DO to the result returned by such a call.

of

At

We now have enough to define the semantics of an agent expression:

~ “Open operand posi-
tion” was defined on
paget66

Although this will be an implicit consequence of the preceding description,
it doesn't hurt to state explicitly what some of the informatioDidis good
for: enabling calls on agent objects.

~ last_resulfrom class
FUNCTION giving the
result of the last evalua-
tion, was introduced on
page655

	25 25 Agents, iteration and introspection
	25.1 OVERVIEW
	25.2 A QUICK PREVIEW
	25.3 NORMAL CALLS
	Operands of a call
	Operand position

	25.4 FROM CALLS TO AGENTS
	Construction time, call time

	25.5 WHAT IS AN AGENT EXPRESSION?
	25.6 AGENT EXPRESSIONS
	25.7 KEEPING OPERANDS OPEN
	25.8 EXPLICIT TYPES FOR OPEN OPERANDS
	25.9 LEAVING THE TARGET OPEN
	25.10 A SUMMARY OF THE POSSIBILITIES
	How agent expressions are made

	25.11 TWO ADVANCED EXAMPLES
	25.12 AGENT EXPRESSION SYNTAX
	Open and closed operands
	Open and closed operand positions

	25.13 COMPLETELY OPEN AGENTS
	25.14 ACCESSING FEATURE PROPERTIES
	25.15 THE BASE CLASS AND TYPE
	25.16 USING AGENTS
	25.17 INLINE AGENTS
	25.18 SYNTAX, VALIDITY AND SEMANTICS OF INLINE AGENTS
	Formal arguments, defining expression of an inline agent
	Associated routine of an inline agent
	Non-inline form of an inline agent

	25.19 VALIDITY AND SEMANTICS OF FEATURE AGENTS
	Target type of an agent expression
	Unfolded form of an agent expression
	Type and value of an agent expression
	Effect of executing call on an agent

