
This revision: Eiffel 4.70-1, 23 May 2000 19:22 (SB time)
Extracted from ongoing work on future third edition of “Eiffel: The Language”.
Copyright Bertrand Meyer 1986-2000. Access restricted to purchasers of the first or
second printing (Prentice Hall, 1991). Do not reproduce or distribute.
25
Agents, iterationand introspection
25.1 OVERVIEW
Objects represent information equipped with operations. Operations and
objects are clearly defined concepts; no one would mistake an operation for
an object.

For some applications — numerical computation, iteration, writing
contracts, building development environments, and “introspection” (a
system’s ability to explore its own properties) — you may find the
operationsso interesting on their own as to treat them asobjectsand pass
these objects around to software elements, which can use them to execute
the operations whenever they want. Because this separates the place of an
operation’sdefinitionfrom the place of itsexecution, the definition can be
incomplete, since you can provide any missing details at the time of any
particular execution.

You can createagent objects to describe such partially or completely
specified computations. Agents combine the power of higher-level
functionals — operations acting on other operations — with the safety of
Eiffel’s static typing system.

Agents are not for the beginning Eiffel user. If this is your first reading,
you should most likely skip this chapter.

25.2 A QUICK PREVIEW
Why do we need agents? The rest of this chapter will present a detailed
rationale, but it does not hurt to start with a few example uses. This preview
contains few explanations, so if this is your first brush with agents some of
it may look mysterious; it will, however, give you an idea of the
mechanism’s power, and by chapter end all the details will be clear.

Assume you want to integrate a functiong (x: REAL): REALover the
interval [0, 1]. With your_integratorof a suitable typeINTEGRATOR
(detailed later) you will simply write the expression

your_integrator. integral (~g (?), 0.0, 1.0)

AGENTS, ITERATION AND INTROSPECTION §25.2648
Here ~g (?), the first argument tointegral, is an agent expression,
distinguished by a tilde character~ appearing before the function name,g.
The tilde avoids any confusion with a routine call such asg (3.5): at the
place we callintegral, we don’t want to computeg yet! Instead, what we
pass tointegral is a “agent” object enablingintegral to call g when it
pleases, as often as it pleases, on whatever values it pleases.

We must tellintegralwhere to substitute such values forx, at the places
where its algorithm will need to evaluateg to approximate the integral. This
is the role of the question mark?, replacing the argument tog.

We may use the same scheme in

to compute the integral , whereh is a three-argument

functionh (x: REAL; a: T1; b: T2): REALandu andv are arbitrary values. As
before we use a question mark at the “open” position, corresponding to the
integrationvariablex,and fill in the“closed”positionswithactualvaluesuandv.

Note the flexibility of the mechanism: it allows you to use the same
routine,integral, to integrate a one-argument function such asf as well as
functions such ash involving an arbitrary number of extra values.

You can rely on a similar structure to provide iteration mechanisms on
data structures such as lists. Assume a classCC with an attribute

and a function

returning true or false depending on a property involvingi. You may write

to denote a boolean value, true if and only if every integer in the listintlist
satisfies integer_property. This expression might be very useful, for
example, in a class invariant. It is interesting to note that it will work for
any kind of integer_property, even if this function involves attributes or
other features ofCC, that is to say, arbitrary properties of the current object.

Now assume that inCC you also have a list of employees:

and that classEMPLOYEEhas a functionis_married: BOOLEAN, with no
argument, telling us about the current employee’s marital status. Then you
may also write inCC the boolean expression

your_integrator. integral (~h (?, u, v), 0.0, 1.0)

intlist: LINKED_LIST[INTEGER]

integer_property(i: INTEGER): BOOLEAN

intlist. for_all (~integer_property(?))

emplist: LINKED_LIST[EMPLOYEE]

emplist. for_all ({ EMPLOYEE} ~is_married)

h (x, u, v) dx
0

1

∫

§25.2 A QUICK PREVIEW 649
to find out whether all employees in the list are married. The argument to
for_all is imitated from a normal feature callsome_employee. is_married,
but instead of specifying a particular employee we just give the type
{ EMPLOYEE}, to indicate wherefor_all must evaluateis_married for
successive targets taken from the the list. Using a tilde instead of a dot
signifies that the expression we pass tofor_all is not the result of a call to
is_married(a boolean value, invalid here) but the featureis_marrieditself.

What is remarkable in the last two examples is again the flexibility of
the resulting iteration mechanism and its adaptation to the object-oriented
form of computation: you can use the same iteration routine, herefor_all
from classLINKED_LIST, to iterate actions applying to either:

• The target of a feature, as withis_married, a feature of class
EMPLOYEE, with no arguments, to be applied to itsEMPLOYEEtarget.

• The actual argument of a feature, as withinteger_propertywhich
evaluates a property of its argumenti — and may or may not, in
addition, involve properties of its target, an object of typeCC.

It seems mysterious that a single iterator mechanism can handle both cases
equally well We will see how to writefor_all and other iterators
accordingly. The trick is that they work on their “open” operands, and that
when we call them we may choose what we leave open: either the argument
as in the is_positive and integral case, where the open position is
represented by a question mark, or the target, as in theis_married case.

Now assume that you want to pass to some other software component,
in the style of STL — the C++ “Standard Template Library” — the
mechanisms needed to execute the cursor resetting and advance operations,
startandforth, on a particular list. Here nothing is left open: you fix the list,
and the operations have no arguments. You may write

All operands — target and arguments — of the agents passed to
other_componentare “closed”, soother_componentcan execute call
operations on such objects without providing any further information.

At the other extreme, you might leave an agent expression fully open, as in

so thatother_component, when it desires to apply a call operation, will
have to provide both a linked list and an actual argument to executeextend.

You will indeed be able, whenever you have an agent object, to apply to
it a procedurecall, whose arguments are the open operands of the original
agent expression (call has no arguments if all operands are closed, as in the
next-to-last example). This will have the same effect as an execution of the
original feature —start, forth, extend— on a combination of the closed
and open arguments.

other_component. some_feature(your_list~start, your_list~forth)

other_component.other_feature({ LINKED_LIST} ~extend(?))

AGENTS, ITERATION AND INTROSPECTION §25.2650
In the end an expression such as{ LINKED_LIST} ~extend(?), which
can in fact be written just{ LINKED_LIST} ~extendwithout any explicit
argument, denotes a “routine object”: a representation of the routine
extendfrom LINKED_LIST, such as could be used by browsing tools or
otherintrospective facilities.

All these examples used, to define the agents, a routine of a class. This
is indeed the most common case. But for more flexibility — especially
useful when you use agents to express advanced contracts — you may also
write aninline agent, built from an arbitrary expression or instruction, with
explicit entities representing the open positions. For example we may
rewrite the earlier agent expression~integer_property(?) as an inline agent

which means exactly the same thing; the convention is simply that you
name and declare the open argumenti — as if it were a routine argument
— instead of referring to it implicitly through a question mark. The vertical
bar| is the defining mark of inline agents. Ifinteger_propertyis a function
of the enclosing class this form is not very useful, and in fact the non-inline
variant~integer_property(?) is more concise and usually preferable. But
with the inline form you can also write an agent such as

which could be useful for example in a postcondition

expressing that for every elementi of the intervallower |..| upper the
value of the item at positioni (in a structure such as an array or list) is the
sum of the corresponding values ina andb. Here too the non-inline form
is possible in principle, and more concise, since we can write the agent as
is_sum_of(?, a, b), using a boolean-valued functionis_sum_ofsuch that
is_sum_of(i, x, y) is true if and only ifitem (i) = x.item (i) + y.item (i).
But if our postconditions and invariants need lots of properties of this
kind, we will end up introducing numerous routines such asis_sum_of
with no other use in the class. In such cases, inline agents are useful. For
an agent involving a single routine such asinteger_property, integral,
is_married, extendand the other examples above, the original non-inline
form using the tilde~ and question mark? is shorter, more abstract and
hence preferable.

You may wonder how this can all work in a type-safe fashion. So it is
time to stop this preview and cut to the movie.

i: INTEGER| integer_property(i)

i: INTEGER| item(i) = a.item(i) + b.item(i)

summed: (lower |..| upper).for_all
(i: INTEGER| item(i) = a.item(i) + b.item(i))

→ For other interesting
applications see“TWO
ADVANCED EXAM-
PLES”, 25.11, page
661

§25.3 NORMAL CALLS 651
25.3 NORMAL CALLS

First we should remind ourselves of the basic properties offeature calls.
When programming with Eiffel we rely all the time on this fundamental
mechanism of object-oriented computation. We write things like

to mean: call featuref on the object attached toa0, with actual arguments
a1, a2, a3. In Eiffel this is all governed by type rules, checkable statically:
f must be a feature of the base class of the typea0; and the types ofa1and
the other actuals of the call must all conform to the types specified for the
corresponding formals in the declaration off.

In a frequent special casea0, the target of the call, is justCurrent,
denoting the current object. Then we may omit the dot and and the target
altogether, writing the call as just

which assumes thatf is a feature of the class in which this call appears. The
first form, with the dot, is aqualifiedcall; the second form isunqualified
(hence the names [Q] and [U] given to our two examples).

In either form the call is syntactically an expression iff is a function or
an attribute, and an instruction iff is a procedure. Iff has been declared with
no formals (as in the case of a function without arguments, or an attribute)
we omit the list of actuals,(a1, a2, a3).

The effect of executing such a call is to apply featuref to the target
object, with the actuals given if any. Iff is a function or an attribute, the
value of the call expression is the result returned by this application.

To execute properly, the call needs the value of the target and the
actuals, for which this chapter needs a collective name:

In the examples the operands area0 (or Current in the unqualified version
[U]), a1, a2anda3. Also convenient is the notion ofpositionof an operand:

Positions, then, range from 0 to the number of arguments declared for the
feature. Position 0, the target position, is always applicable.

[Q] a0.f (a1, a2, a3)

[U] f (a1, a2, a3)

Operands of a call
The operands of a call include its target (explicit in a qualified
call, implicit in an unqualified call), and its arguments if any.

Operand position
The target of a call (implicit or explicit) has position 0. Thei-th
actual argument, for any applicablei, has positioni.

← Feature calls were
studied in chapter23
and their type proper-
ties in chapter24.

AGENTS, ITERATION AND INTROSPECTION §25.4652
25.4 FROM CALLS TO AGENTS

For a call such as the above, we expect the effect just discussed to occur as a
direct result of executing the call instruction or expression: the computation
is immediate. In some cases, however, we might want to write an expression
that only describesthe calls intended computation, and toexecutethat
description later on, at a time of our own choosing, or someone else's. This
is the purpose of agent expressions, which may be described asdelayed calls.

Why would we delay a call in this way? Here are some typical cases:

A •We might want the call to be applied to all the elements of a certain
structure, such as a list. In such a case we will specify the agent
expression once, and then execute it many times without having to re-
specify it in the software text. The software element that will repeatedly
execute the same call on different objects is known as aniterator .
Functionfor_all, used earlier, was an example of iterator.

B •In an iterator-like scheme for numerical computation, we might use a
mechanism that applies a call to various values in a certain interval, for
example to approximate the integral of a function over that interval. The
first example in this chapter relied on such anintegral function.

C •We might want the call to be executed by another software element:
passing an agent object to that element is a way to give it the right to operate
on some of our own data structures, at a time of its own choosing. This
was illustrated with the calls passing toother_componentsome agent
expressions representing operations applicable toyour_list.

D •We might specify that any future creation of objects of a certain type
apply the call to initialize these objects.

E •We might want to ensure that the call is executed only when and if
needed, and then only once for any particular object. This would give us
a “once per object” mechanism along the lines of “once functions”
(which are executed once per system).

F •Finally, we may be interested in the agent as a way to gain information
about the feature itself, whether or not we ever intend to execute the call.
This may be part of the more general goal of providingintr ospective
capabilities: ways to enable a software system to explore and manipulate
information about its own properties.

These examples illustrate one of the differences between agent expressions
and calls: to execute a call we need the value of all its operands (target and
actuals); but for an agent expression we may want to leave some of the
operands open for later filling-in. This is clearly necessary for casesA and
B, in which the iteration or integration mechanism will need to apply the
feature repeatedly, using different operands each time. In an integration

Introspection is also
calledreflection, but the
first term is more accu-
rate.

Once functions see
“ROUTINE BODY”,
8.6,page270.The once
per object mechanism
using agents is
described below.

Introspection is also
calledreflection, but the
first term is more accu-
rate.

Introspection is also
calledreflection, but the
first term appears more
appropriate.

§25.4 FROM CALLS TO AGENTS 653
we will need to applyg to successive values of the interval[a, b].

For an agent we need to distinguish between two moments:

Since the only way to obtain an agent initially is throughagent expressions, as
specified next, it is meaningful to talk about the “agent expression defining it”.

For a normal call the two moments are the same. For an agent we will have
one construction time (zero if the expression is never evaluated), and zero
or more call times. At construction time, we may leave some operands
unspecified; they they will be called theopen operands. At call time,
however, the execution needs all operands, so the call will need to specify
values for the open operands. These values may be different for different
executions (different call times) of the same agent expression (with a single
construction time).

There is no requirement thatall operands be left open at creation time:
we may specify some operands, which will be closed, and leave some other
open. In the example of computing, for some valuesu andv, the integral

whereh is a three-argument function, we pass to the integration mechanism an
agent that is closed on its last two operands (u andv) but open onx.

Nothing forces you, on the other hand, to leaveany operand open. An
agent with all operands closed corresponds to the kind of application called
C above, in which we don’t want to execute the call ourselves but let
another software elementother_componentcarry it when it is ready. We
choose the construction time, and package the call completely, including
all the information needed to carry it out;other_componentchooses the
call time. This style is used by iterators in the C++ STL library.

At the other extreme, an agent withall operands open has no
information about the target and actuals, but includes all the relevant
information about the feature. This is useful in applicationF: passing
around information about a feature for introspection purposes, enabling a
system to deliver information about its own components.

Construction time, call time
The construction time of an agent object is the time of
evaluation of the agent expression defining it.
Its call time is when a call to its associated operation is executed.

g (x) dx
x = a

x = b

∫

→ A precise definition
of “open” and
“closed” operands
appears on page666.

Readers familiar with
lambda calculus may
think of open as “free”
and closed as “bound”.

h (x, u, v) dx
x = a

x = b

∫

AGENTS, ITERATION AND INTROSPECTION §25.5654
25.5 WHAT IS AN AGENT EXPRESSION?

A normal call is a syntactical component — instruction or expression —
meant only for one thing: immediate execution. If it is an expression
(because the feature is a function), it has a value, computed by the
execution, and so denotes an object.

An agent expression has a different status. Since construction time is
separate from call time, the agent expression can onlydenote an object. That
object, called anagent, contains all the information needed to execute the call
later, at various call times. This includes in particular:

• Information about the routine itself and its base type.

• The values of all the closed operands.

What is the type of an agent expression? Four Kernel Library classes are
used to describe such types:ROUTINE, PROCEDURE, FUNCTIONand
PREDICATE. Their class headers start as follows:

In theactualclasstexts, the formal generic matters have namesBASE_TYPE,
OPEN_ARGSand RESULT_TYPEto avoid conflicts with programmer-
chosen class names. This chapter uses shorter names for simplicity.

If the associated feature is a procedure the agent will be an instance of
PROCEDURE; for a function or attribute, we get an instance of
PREDICATEwhen the result is boolean, ofFUNCTIONwith any other
type. Here for ease of reference is a picture of the inheritance hierarchy:

deferred class ROUTINE[BASE, OPEN–> TUPLE]

class PROCEDURE[BASE, OPEN–> TUPLE] inherit
ROUTINE[BASE, OPEN]

class FUNCTION[BASE, OPEN–> TUPLE, RES] inherit
ROUTINE[BASE, OPEN]

class PREDICATE[BASE, OPEN–> TUPLE] inherit
FUNCTION[BASE, OPEN]

→ A.6.26 to A.6.28 in
the ELKS chapter,
starting on page896.

Agent classes
ROUTINE

PROCEDURE FUNCTION

PREDICATE

§25.6 AGENT EXPRESSIONS 655
The role of the formal generic parameters is:

• BASE: type (class + generics if any) to which the feature belongs.

• OPEN: tuple of the types of open operands, if any.

• RES: result type for a function.

One of the fundamental features of classROUTINE is

In addition,FUNCTION andPREDICATEhave the feature

and, for convenience, the following function combiningcall andlast_result:

Note that the formal generic parameters forROUTINE, PROCEDURE,
FUNCTION and PREDICATEprovide what we need to make the agent
mechanism statically type-safe. In particular theOPENparameter, a tuple
type, gives the exact list of open operand types; since the argument tocall and
itemis of typeOPEN, the compiler can make sure that at call time the actual
arguments tocall will be of the proper types, conforming to the original
feature’s formal argument types at the open positions. The actuals at closed
positions are set at construction time, again with full type checking. So the
combination of open and closed actuals will be type-valid for the feature.

ROUTINE, PROCEDURE, FUNCTION and PREDICATE have more
features than listed above; in particular, they provide introspection facilities,
describing properties of the associated routines and discussed below. For a
complete interface specification, see thecorrespondingsections in the
presentation of Kernel Library classes.

25.6 AGENT EXPRESSIONS

How do we produce agent objects? We useagent expressionsfor which the
basic syntactical rule is very simple: start from a normal feature call; in the
qualified case, replace its dot with a tilde; in the unqualified case, add a
tilde before the feature name. (The syntax is different forinline agent
expression, discussed in alater section.)

call (v: OPEN) is
--Call featurewithall itsoperands,usingvfor theopenoperands.

last_result: RES
-- Function result returned by last call tocall, if any

item(v: like open_operands): RESis
-- Result of calling feature with all its operands,
-- usingv for the open operands.
-- (Usescall for the call.)

ensure
set_by_call: Result= last_result

→ SectionsA.6.26 to
A.6.28, starting on
page896.

→ “INLINE
AGENTS”, 25.17,
page 675.

AGENTS, ITERATION AND INTROSPECTION §25.6656
So if a valid call of the qualified form is

you get an agent expression by replacing the dot with a tilde:

In the case of a valid unqualified call

wheref is a feature of the enclosing class, you obtain the corresponding call
expression by adding a tilde:

In either case, the new notation is not a call (instruction or expression) any
more, but an expression of a new syntactic kind,Feature_agent, which
denotes an agent, of aPROCEDUREtype if f is a procedure and a
FUNCTION type if f is a function.

You can do with an agent expression all you are used to do with other
expressions. You can assign it to an entity of the appropriate type;
assumingf is a procedure ofaclassCC, you may write, in classCC itself:

Note that here all operands are closed since we specified the targeta0 and
all the operandsa1, a2, a3, so the second formal generic is justTUPLE, and
the call tocall takes an empty tuple[] .

More commonly than assigning a call expression to an entity as here,
you will pass it as actual argument to a routine, as in

wheredo_something, in the corresponding class, takes a formalpdeclared as

or just

presumably to callcall onp at some later stage, as we will shortly learn to
do. This is the scheme that wascalledC in the presentation of example
applications: passing a completely closed agent to another component of
the system, to let it execute the call when it chooses to. For example you
can passyour_list~startor your_list~extend(some_value).

a0. f (a1, a2, a3)

a0~f (a1, a2, a3)

f (a1, a2, a3)

~ f (a1, a2, a3)

x: PROCEDURE[CC, TUPLE]
…
x := a0~f (a1, a2, a3)
…
x. call ([])

some_other_component. do_something(a0~f (a1, a2, a3))

p: PROCEDURE[CC, TUPLE]

p: PROCEDURE[ANY, TUPLE]

This example assumes
thatCCis non-generic,
so that it is both a class
and a type.

← SchemeC wason
page652.

§25.7 KEEPING OPERANDS OPEN 657
25.7 KEEPING OPERANDS OPEN

The examples just seen are still of limited interest because all their operands
are closed. What if you want to keep some operands open for latter filling-
in at call time, for example by an iteration or integration mechanism?

For arguments (wewill see how to handle the target in a short while) the
basic technique is very simple: to keep an actual open, just replace it by a
question mark. This yields examples such as

The respective types of these call expressions are, assuming thatf is a
procedure with formals declared of typesT1, T2 andT3:

If f were a function, the types would useFUNCTION instead of
PROCEDURE, with one more actual generic representing the result type.
For a predicate (boolean-valued function), you may usePREDICATE.

You will have noted how the generic parameters ofROUTINEand its
heirs all provide a full specification of the types involved, enabling static
type checking. Consider in particular the role ofthe second generic
parameterOPEN in ROUTINE [BASE, OPEN –> TUPLE] and its
descendantsPROCEDURE, FUNCTION and PREDICATE. OPEN
represents the tuple of types of all the open operands. In the first case
above, forw, only the last argument, of typeT3, is left open; in the last case,
for z, all three arguments are open. (But in all examples so far the targeta0
is closed.) This immediately indicates what argument types are permissible
in calls tocall (or itemfor a function) on the corresponding agents:

w := a0~f (a1, a2, ?)
x := a0~f (a1, ?, a3)
y := a0~f (a1, ?, ?)
z := a0~f (?, ?, ?)

w: PROCEDURE[T0, TUPLE[T3]]
x: PROCEDURE[T0, TUPLE[T2]]
y: PROCEDURE[T0, TUPLE[T2, T3]]
z: PROCEDURE[T0, TUPLE[T1, T2, T3]]

w. call ([e3])
x.call ([e2])
y. call ([e2, e3])
z. call ([e1, e2, e3])

→ About the target see
“LEAVING THE TAR-
GETOPEN”, page659.

→ The role of the first
generic parameter,
BASE,willbediscussed
in “THE BASE CLASS
AND TYPE”, 25.15,
page 668.

AGENTS, ITERATION AND INTROSPECTION §25.8658
where the types of expressionse1, e2, e3must conform toT1, T2 andT3
respectively. The effect of these calls is the same as what we would obtain
through the following normal calls (call time same as construction time):

25.8 EXPLICIT TYPES FOR OPEN OPERANDS

As a variant of the “question mark” specification for open operands, you
might want to specify explicitly a certain type for some of the arguments.
Instead of the first example

you may write

to specify that you are leaving open the last argument, and that the
corresponding actual must be of type conforming toU3. This will be called
the braces convention, complementing the “question mark convention”
seen so far. In this case the type ofwu is

Clearly, this is only permitted for a typeU3 that conforms toT3, the type
of the last formal argument. This is a general rule: where a normal call
requires an operand of typeTi, a corresponding agent expression may use
{ Ui} , for any typeUi conforming toTi. This means that the argument is
left open, and that any corresponding actual at call time must be of a type
conforming toUi.

We may now reinterpret the question mark convention in terms of the
braces convention: a question mark at an argument position is simply an
abbreviation for {Ti}, whereTi is the type of the corresponding formal. For
exampley, defined earlier asa0~f (a1, ?, ?) could instead have been written

a0.f (a1, a2, e3)
a0. f (a1, e2, a3)
a0. f (a1, e2, e3)
a0. f (e1, e2, e3)

w := a0~f (a1, a2, ?)

wu := a0~f (a1, a2, {U3})

wu: PROCEDURE[T0, TUPLE[U3]]

a0~f (a1, {T2}, { T3})

§25.9 LEAVING THE TARGET OPEN 659
25.9 LEAVING THE TARGET OPEN

The examples of open operands seen so far were open only for some or all
of the arguments; the target was closed. Your may also want to leave the
target open. Looking again at our staple example, we see that if we start
from a normal call of the qualified form

we cannot use the question mark convention to replace the targeta0, since
we need to identify the class of whichf is a feature. But the braces
convention will work. You may write

to denote an agent open on its target (of typeT0) and closed on all
arguments. Of course you can open any or all of the arguments too, as in

where we get withu, for the first time, an agent open on all its operands,
target and arguments.

The types for the last call expressions are:

Note once again how the second generic parameter of theROUTINE
classes corresponds to the open operands — target and arguments included.

The next section discusses the role of the first generic parameter, always
representing the target type.

The order of the open operands is the one in which these operands would
appear in a normal call: target, then first argument and so on. Calls tocall
on the corresponding routine objects will be instructions of the form

with expressionse0, e1, e2, e3of types conforming toT0, T1, T2, T3. Note
how, when it comes to applyingcall (or itemfor a function) to an agent, the
target, if left open in the call expression, must be passed as part of the actual
argument tuple, in the same way as an open argument.

a0. f (a1, a2, a3)

s := {T0} ~f (a1, a2, a3)

t := {T0} ~f (a1, a2, ?)
u := {T0} ~f (?, ?, ?)

s: PROCEDURE[T0, TUPLE[T0]]
t: PROCEDURE[T0, TUPLE[T0, T3]]
u: PROCEDURE[T0, TUPLE[T0, T1, T2, T3]]

s. call ([e0])
t. call ([e0, e3])
u. call ([e0, e1, e2, e3])

→ The expression foru
can be abbreviated to
just {T0} ~ f. See
“COMPLETELY
OPEN AGENTS”,
page 666.

AGENTS, ITERATION AND INTROSPECTION §25.10660
These agent expressions will have the same effect as the normal calls

In the unqualified case, a normal call of the form

may be viewed as an shorthand for the qualified formCurrent. f (a1, a2, a3).
Correspondingly, you may write the open-target agent expression as

but you may also use a question mark for the target:

Here too you may of course leave some of the arguments open, or all of
them as in

25.10 A SUMMARY OF THE POSSIBILITIES

Although you may have the impression that the agent mechanism has many
variants, it is in fact very simple. So to avoid any confusion, or impression
of confusion, here is an informal description listingall the possibilities:

That’s all there is to it!

In the next sections we continue exploring the details, and study the
precise syntax, validity and semantics of agent expressions.

e0. f (a1, a2, a3)
e0. f (a1, a2, e3)
e0. f (e1, e2, e3)

f (a1, a2, a3)

{ CC} ~f (a1, a2, a3)

? ~f (a1, a2, a3)

v := ?~ f (?, ?, ?)

How agent expressions are made
To obtain an agent expression, youmust:
1 • Start from a valid routine call — of any form, qualified or not.

2 • Replace the dot by a tildeif the call is qualified; otherwise,
add a tilde before the routine name.

In addition, to make some operands open, youmay:
3 • Replace any operand(the target, or any argument) by a

question mark, or a type in braces, as in{ YOUR_TYPE}

4 • If all the argumentsare question marks, omit the argument
list (and the parentheses) altogether.

CC is the enclosing
class, assumed to be
non-generic.

→ The expression forv
canbeabbreviatedto just
?~ f. “COMPLETELY
OPEN AGENTS”,
25.13, page 666.

→ This only covers non-
inline agents. See also
“INLINE AGENTS”,
25.17, page 675.

§25.11 TWO ADVANCED EXAMPLES 661
25.11 TWO ADVANCED EXAMPLES

We have now seen cases of all the variants of agent expressions, but before
proceeding to a detailed analysis of all their properties let’s gain further
appreciation for the power and versatility of the mechanism by looking at
two interesting applications: error processing and “once per object”.

The first example addresses a frequent situation in which we perform a
sequence of actions, each of which might encounter an anomaly that
prevents continuing as hoped. The problem here is that it’s difficult to avoid
a complex, deeply nested control structure, since we may have to get out at
any step. The straightforward implementation will look like this:

For example we may want to do something with a file of namepath_name.
We first test that thatpath_nameis not void. Then that the string is not
empty. Then that the directory exists. Then that the file exists. Then that it
is readable. Then that it contains what we need. And so on. A negative
answer at any step along the way must lead to reporting an error situation
and aborting the whole process.

The problem is not so much the nesting itself; after all, some algorithms
are by nature complex. But often the normal processing is not complicated
at all; it's the error processing that messes everything up, hiding the
“useful” processing in a few islands lost in an ocean of error handling. If
the error processing is different in each case (not ok1, not ok2and so on)
we can't do much about it. But if it is always of the form: “Record the error
source and terminate the whole thing", then the above structure may seem
unpleasantly over-complicated. Although we might use exceptions to
address the problem, they are often overkill.

An agent-based technique is useful in some cases. It assumes that you
write the various actions —action1 ... action3 above — as procedures,
each with a body of the form

 action1
if ok1then

 action2
if ok2then

 action3
... More processing, more nesting ...

end
end

...Try to do what's needed...
controlled_check (execution_ok, "...Appropriate message...")

AGENTS, ITERATION AND INTROSPECTION §25.11662
with execution_okrepresenting the condition that must be satisfied for the
processing to continue. Then you can rewrite the processing above as just:

This linear structure is much simpler than the original.

The features whose names start withcontrolled_come from the EiffelBase
classCONTROLLED_EXECUTION, of which the class containing the above
scheme should be a descendant. These procedures are not difficult to write;
for example controlled_check sets controlled_glitch and
controlled_glitch_message, andcontrolled_execute lookslike this:

The second example, also supported by an EiffelBase class, provides an
elegant “once per object” mechanism. You know, of course, Eiffel’s“once
routines”, executed only once per system execution. They define a “once
per class” mechanism: all instances of a class share the result of a once
function. (All these concepts are applicable to procedures, but for this
discussion we restrict ourselves to functions.) Now assume you need
functions that compute a result specifric to each instance of the class, and
computed just once for that instance, the first time it’s requested — if at all.
A typical application would be large pieces of information associated with
objects of a certain type, but stored in a database; for example each instance

 controlled_execute([
~ action1,
~ action2 (...),
~ action3(...)
])

if controlled_glitchthen
warning(controlled_glitch_message)

-- Procedurewarning is an error reporting mechanism
end

controlled_execute
(actions: ARRAY [PROCEDURE [ANY, TUPLE]]) is

-- Executeactions, stopping if encountering a glitch.
local

i: INTEGER
do

from
controlled_glitch := False; i := actions.lower

until i > actions.upperor else controlled_glitchloop
actions.item.call ([])
i := i + 1

end
end

The routine as it appears
in the library has a few
extra instructions to
recordtheglitchstepand,
onoption, raiseanexcep-
tion.

← For an introduction
to once routines see
“ROUTINE BODY”,
8.6, page 270.

§25.11 TWO ADVANCED EXAMPLES 663
of a class COMPANY may have stock_history information, of type
HISTORY, which may be huge. We only want to retrieve the information on
demand; given the size of the information and the number of instances of
the class, it is not acceptable to load everything ahead of time. Even if an
instance ofCOMPANYis in memory, we want to retrieve the associated
HISTORYfrom the database only when and if we need access to the
company'sstock_history.

Agents provide us with a general solution to all problems of this kind.
In classCOMPANY you will simply declare

and obtain the value, when and if needed, as

Hereretrieved_historyis the function that computes the needed result —
the one that you want to call once for each object. That's all you have to do!
Note that this scheme allows you to have as many “once per object”
functions as you like in any given class. It relies on a general-purpose
EiffelBase classONCE_PER_OBJECT of the following form:

stock_history: ONCE_PER_OBJECT[HISTORY]

stock_history.item(~ retrieved_history)

expanded class
 ONCE_PER_OBJECT[G]
feature -- Access

item(f: FUNCTION [ANY, TUPLE, G]): G is
-- Value off, computed once for each object;
-- subsequent calls return same value for same object.

do
if not computed then

internal_result:= f.item([])
computed:= True

end
Result:= internal_result

end
feature { NONE} -- Implementation

computed: BOOLEAN
-- Has item already been requested?

internal_result: G
-- Result, if already computed

end -- class ONCE_PER_OBJECT

AGENTS, ITERATION AND INTROSPECTION §25.12664
25.12 AGENT EXPRESSION SYNTAX

We have now seen examples of all the variants of agent expression, so it is
time to give the syntax. (This section introduces no new concept, so the
hurried reader may skip to the next one.)

The new construct isAgent, a variant ofExpression:

The construct of interest for the moment isFeature_agent, corresponding to
the tilde form. The inline form,Inline_agentis studied in aseparatesection.

The major difference between the syntax of aFeature_agentand of a
normalCall is the tilde of anAgent_unqualified, which has no equivalent
in the corresponding construct,Unqualified_call. This guarantees that an
agent expression can never be confused for a normal call.

Note that the mechanism is applicable not only to identifier features but
also to operator features (Infix andPrefix). The technique is very simple:
just designate the feature by itsFeature_name, and add a tilde to it as you
would do with an identifier feature.You may remember that the Feature
Name Consistency principle allows us, if§ is the operator of an infix
feature, to treatinfix "§" as a normal feature name and use it in any place
where a feature identifier would be legal; same thing forprefix "‡" if ‡ is
a prefix operator. So you can use agent expressions such as

Coming back to the general case, theAgent_targetmay be absent, in which
case the call will be considered closed on its target: the current object. In this
case the associated feature must be a feature of the current class, and the
Feature_agent will start with a tilde and a feature name, as in

Agent =∆ Feature_agent| Inline_agent

Feature_agent=∆ [Agent_target] Agent_unqualified

Agent_unqualified=∆ "~" Feature_name[Agent_actuals]

Agent_target=∆ Entity |Parenthesized|Type_descriptor

Type_descriptor=∆ Explicit_type_descriptor|Placeholder

Explicit_type_descriptor=∆ "{" Type"}"

Placeholder=∆ "?"

a~infix "+" (b) -- All closed
~infix "+" (?) -- Open on argument, closed on target
?~ prefix "+" -- All open (open on target, no argument)

~f (a1, a2, a3)
~ f

If hurried skip to
“COMPLETELY
OPEN AGENTS”,
25.13, page 666.

Agent_actuals represents
the actual arguments, if
any, to the agent, and is
specified next.

“INLINE AGENTS”,
25.17, page 675. Rou-
tine agents use a verti-
cal bar |.

← Feature Name Con-
sistencyprinciple:page
203.

§25.12 AGENT EXPRESSION SYNTAX 665
In all other cases the agent expression has an explicitAgent_target, for
which the specification shows three possibilities:Entity, Parenthesizedand
Type_descriptor. Examples of aAgent_target of each kind are

This syntax requires you, if you want to use as target an expression other
than a simple entity, to enclose it in parentheses, as in the second example.
There is no loss of expressiveness, since the expression you put in
parentheses can still be as complicated as you like. The reason for forcing
parentheses is a concern for readability. With suitable precedence rules, it
would not be hard for a compiler to parsea.k (x). l (y).m~f (a1, a2, a3).
Instead, you must write

where the parentheses around the target remove any confusion arising from
the presence of both dots (part of the multi-level qualifiedCall serving as
target of the agent expression) and tildes.

The third possibility for a target includes aType_descriptor. This may
be anExplicit_type_descriptorlisting the target type in braces:

or simply a question mark, called aPlaceholder, indicating an open target
of the current type:

This expression assumes thatf is a feature of the enclosed class; it
represents an agent that is open on its target.

The part after the tilde is what the syntax productions call
Agent_unqualified, which resembles theUnqualified_callcomponent of
normal calls, but with two more possibilities for anAgent_actual:

One of the variants ofAgent_actualis Actual, meaning a normal actual
argument for a call (Expressionor, for an external routine,Address). The
new variant isType_descriptor, covering two forms:Placeholder(a question
mark) andExplicit_type_descriptor, a type in braces.

e0 -- An Entity
(a.k (x). l (y).m) -- A Parenthesizedcontaining a complex expression
{ U0} -- A Type_descriptor(explicit)

(a.k (x). l (y).m)~ f (a1, a2, a3)

{ T0} ~ f (a1, a2, a3)

?~f (a1, a2, a3)

Agent_actuals=∆ "(" Agent_actual_list ")"

Agent_actual_list=∆ {Agent_actual "," …}

Agent_actual=∆ Actual |Type_descriptor

AGENTS, ITERATION AND INTROSPECTION §25.13666
We can define precisely what “open” and “closed” mean for the
operands of an agent expression:

An earlier definition also introduced the notion ofoperandposition, which
we can now extend to a definition of open and closed positions:

25.13 COMPLETELY OPEN AGENTS

In some cases it will be useful to write an agent expression that denotes an
an agent open on all of its arguments, and possibly on its target too.

We have seen how to obtain this effect by using question marks
(Placeholder) at every argument position:

An abbreviation is permitted for this case: omit the parenthesized argument
list (theAgent_actuals part) altogether, yielding respectively

These examples all have closed targets; in the unqualified case the target is
the current object. The fully open variants, with open targets, are:

Open and closed operands
Theopen operandsof aFeature_agent include:
• Its target if there is aAgent_targetand it is aType_descriptor

(Explicit_type_descriptor or Placeholder).

• Any Agent_actual that is aType_descriptor.

Theclosed operands include all non-open operands.

Open and closed operand positions
Theopen operand positionsof aFeature_agentare the operand
positions of its open operands, and theclosed operand positions
those of its closed operands.

a0~ f (?, ?, ?) -- Qualified, arguments open, target closed
~f (?, ?, ?) -- Unqualified, arguments open, target closed

a0~ f -- Qualified, arguments open, target closed
~f -- Unqualified, arguments open, target closed

{ T0} ~ f -- Qualified, all operands open (target and arguments)
?~f -- Equivalent to previous one ifT0 is current type

← The operands of a
call were defined on
page651 as including
its target, and its argu-
ments if any.

← “Operand position”
wasdefinedonpage651:
the target position is 0,
and the argument posi-
tions start at 1.

← The first expression
wascalledzonpage657;
thesecondonewascalled
v on page660.

← The first expression
hasthesamevalueasuas
defined on page659.

§25.14 ACCESSING FEATURE PROPERTIES 667
The syntax just given explicitly allows all these abbreviated forms. It is the
same as the full form iff has no arguments; but iff has arguments, a normal
call without actuals, such asa0. f, or justf in the non-qualified case, would
violate the Argument rule. In contrast, theAgent Expressionrule,
introduced later in this chapter, explicitly allows you to omit the
Agent_actuals, even for a feature with arguments, as an abbreviation for a
list of completely open actuals.

This abbreviated form has the advantage of conveying the idea that the
denoted agent is a true “feature object”, carrying properties of the feature
in its virginal state, not tainted by any particular choice of actual argument.
The last two variants shown do not even name a target. This is the kind of
object that we need for suchintrospectiveapplications as writing a system
that enables its users to browse through its own classes.

25.14 ACCESSING FEATURE PROPERTIES

As part of introspection support, classROUTINE and its descendants
provide features to access the precondition and postcondition of a routine:

This enables you to check the precondition before you apply an agent, as in

whereyour_agentis an agent expression andyour_operandsis a valid
tuple of operands for that agent.

There is, as will be seen next, a similar facility for class invariants.

precondition(args: OPEN) BOOLEAN
-- Do args satisfy routine’s precondition in present state?

postcondition(args: OPEN) BOOLEAN
-- Does current state satisfy routine’s postcondition
-- for operandsargs?

if your_agent.pre (your_operands) then
your_agent.call (your_operands)

end

← The Argument rule
was on page640.

→ The Agent Expres-
sion rule will appear on
page681.

AGENTS, ITERATION AND INTROSPECTION §25.15668
25.15 THE BASE CLASS AND TYPE
Introspection support is also one of the concerns behind the first generic
parameter ofROUTINE, PROCEDURE, FUNCTION and PREDICATE.
The specification

includes, as first generic parameter, the typeBASErepresenting the type
(class with generic parameters) to which an agent’sassociatedfeature
belongs. This is the type of the target expected by the feature.

The examples seen so far do not useBASEat all, because procedurecall
does not need it. If the agent is closed on its target, as in

then it includes, here througha0, the target information that a later call to
call may require. In the other case — open target — as in

then the target type is specified, hereT0, and provides the information
needed to determine the right version off. In this case theBASEgeneric
parameter is in fact redundant, since it is identical to the first component of
the tuple type corresponding toOPEN; the type oft, for example, is

where the two tuple components correspond to the two open operands: the
target, and the last argument.

In both the closed target and open target cases, then, we don’t need the
BASE generic parameter if all we do with agents is executecall on them.

BASEis useful for other purposes. WithoutBASEa call closed on its
target, as withy above, could not contain any information about the class
(and associated type) where the call’s associated feature is defined. To open
the gate to fullintrospectionservices — enabling a system to explore its
own properties — classROUTINE uses a feature

that yields the type to which the agent’s feature belongs. ClassTYPE[G] from
the Kernel Library provides information about a typeG and its base class.

ClassTYPEis, even more fundamentally thanROUTINEand its heirs,
the starting place for introspection. Example features include:

• name: STRING, the upper name of the type’s base class.
• generics: ARRAY[TYPE[ANY]] , the actual generic parameters, if any,

used in the type’s derivation.
• routines: ARRAY[ROUTINE[ANY, TUPLE]] , the routines of a class,

each an instance ofPROCEDURE, FUNCTION or PREDICATE.

ROUTINE[BASE, OPEN–> TUPLE]

y := a0~ f (a1, ?, ?)

t := {T0} ~ f (a1, a2, ?)

 ROUTINE[T0, TUPLE[T0, T3]]

base_type: TYPE[BASE]

→ Although intuitively
clear, the notion of
“associated feature” of
an agent has not yet
been defined precisely.
The definition is part of
the Agent Expression
rule, page681.

§25.16 USING AGENTS 669
• attributes: ARRAY[FUNCTION[ANY]] , the attributes.

• invariant (obj: G): BOOLEAN, telling us whether an instanceobj
satisfies the invariant.

ClassANYhas a feature

which yields an object describing the type of the current object.

So within a class of whichf is a feature,generatorhas the same value as
(~ f). base_type; if a is of typeT andf is a feature ofT, thena.generatorhas
the same value as({ T} ~ f). base_type.

A more complete interface specification ofTYPEappears in the description
of the Kernel Library classes.

Thanks to the presence ofBASEamong the generic parameters of
ROUTINEand its descendants, we can give a proper type tobase_type, and
as a result gain access to a whole library of introspection mechanisms.

25.16 USING AGENTS

All the details of the agent mechanism have now been introduced, although
we haven’t yet taken the trouble to look at thevalidity rulesandprecise
semantics. We should now revisit and extend the examples sketched at the
very beginning of this chapter and see how to make them work in practice:
not just the client side (integrating a function, iterating an operation) but the
suppliers too (the integrator, the iterators).

The first set of examples was about integration. We assumed functions

and wanted to integrate them over a real interval such as [0, 1], that is to
say, approximate the two integrals

We declare

and, with the proper definition of functionintegral in classINTEGRATOR,
we will obtain the integrals through the expressions

generator: TYPE[like Current]

g (x: REAL): REAL
h (x: REAL; a: T1; b: T2): REAL

your_integrator: INTEGRATOR

your_integrator. integral (~g (?), 0.0, 1.0)
your_integrator. integral (~h (?, u, v), 0.0, 1.0)

→ OnANYand uni-
versal features see
chapter30.

→ On classTYPE see
A.6.30, page 900.

→ Validity and seman-
tics are in the next sec-
tion, 25.19, page 680.

h (x, u, v) dx
x = 0

x = 1

∫g (x) dx
x = 0

x = 1

∫

AGENTS, ITERATION AND INTROSPECTION §25.16670
The question mark indicates, in each case, the open argument: the place where
integral will substitute various real values forx when evaluatingg or h.

Note that if we wanted in classD to integrate a real-valued function
from classREAL, such asabs which is declared inREAL as

we would obtain it simply through the expression

Let us now see how to write functionintegral to make all these uses
possible. We use a primitive algorithm — this is not a treatise on numerical
methods — but what matters is that any integration technique will have the
same overall form, requiring it to evaluatef for various values in the given
interval. Here classINTEGRATORwill have a real attributestep
representing the integration step, with an invariant clause stating thatstep
is positive. Then we may writeintegral as:

abs: REALis
-- Absolute value

do … end

your_integrator. integral ({ REAL} ~abs, 0.0, 1.0)

integral
(f: FUNCTION[ANY, TUPLE[REAL], REAL];
low, high: REAL): REALis

-- Integral off over the interval [low, high]
require

meaningful_interval: low <= high
local

x: REAL
do

from
x := low

invariant
x >= low ; x <= high+ step
-- Result approximates the integral over
-- the interval [low, low.max (x – step)]

until x > high loop
Result:= Result+ step ∗
x := x + step

end
end

f.item([x])

§25.16 USING AGENTS 671
The boxed expression is where the algorithm needs to evaluate the function
f passed tointegral. Remember thatitem, as defined in classFUNCTION,
calls the associated function, substituting any operands (herex) at the open
positions, and returning the function’s result.The argument ofitemis a tuple
(of typeOPEN, the second generic parameter ofFUNCTION); this is why
we need to enclosex in brackets, giving a one-argument tuple:[x].

In the first two example uses,~g (?) and ~h (?, u, v), this argument
corresponds to the question mark operands togandh. In the last example the
call expression passed tointegralwas{REAL} ~abs, where the open operand
is the target, represented by{REAL} , and successive calls toitemin integral
will substitute successive values ofx as targets for evaluatingabs.

In the case ofh the closed operandsu andv are evaluated at the time of
the evaluation of the agent expression~h(?,u,v), and so they remain the same
for every successive call toitem within a given execution ofintegral.

Note the typeFUNCTION [ANY, TUPLE [REAL], REAL] declared in
integral for the argumentf. It means that the corresponding actual must be
a call expression describing a function from any class (hence the first actual
generic parameter,ANY) that has one open operand of typeREAL(hence
TUPLE [REAL]) and returns a real result (henceREAL). Each of the three
example functionsg, h and abs can be made to fit this bill through a
judicious choice of open operand position.

Now the iteration examples. In a classCC we want to manipulate both
a list of integers and a list of employees

and apply the same functionfor_all to both cases:

The functionfor_all is one of the iterators defined in classTRAVERSABLE
of EiffelBase, and available as a result in all descendant classes describing
traversable structures, such asTREEand LINKED_LIST. This boolean-
valued function determines whether a certain property holds for every
element of a sequential structure. The property is passed as argument to
for_all in the form of a call expression with one open argument.

intlist: LINKED_LIST[INTEGER]
emplist: LINKED_LIST[EMPLOYEE]

if intlist. for_all (~is_positive(?)) then … end
if intlist.for_all (~over_threshold(?)) then … end

if emplist.for_all ({ EMPLOYEE} ~ is_married) then … end

AGENTS, ITERATION AND INTROSPECTION §25.16672
Our examples use three such properties of a very different nature. The first
two are functions of the client classCC, assessing properties of their
integer argument. The result of the first depends only on that argument:

Alternatively the property may, as in the second example, involve other
aspects ofCC, such as an integer attributethreshold:

Hereover_thresholdcompares the value ofi to a field of the current object.
Surprising as it may seem at first, functionfor_all will work just as well in
this case; the key is that the call expression~over_threshold(?), open on
its argument, is closed on its target, the current object; so the agent object
it produces has the information it needs to access thethresholdfield.

In the third case, the argument tofor_all is { EMPLOYEE} ~ is_married;
this time we are not using a function ofCCbut a functionis_marriedfrom
another classEMPLOYEE, declared there as

Unlike the previous two, this function takes no argument since it assesses
a property of its target; We can still, however, pass it tofor_all: it suffices
to make the target open.

The types of the call expressions are the following:

You may also applyfor_all to functions with an arbitrary number of
arguments, as long as you leave only one operand (target or argument) open,
and it is of the appropriate type. You may for example write the expressions

is_positive(i: INTEGER): BOOLEAN is
-- Is i positive?

do Result:= (i > 0) end

over_threshold(i: INTEGER): BOOLEAfsN is
-- Is i greater thanthreshold?

do Result:= (i > threshold) end

is_married: BOOLEANis do ... end

PREDICATE[CC, TUPLE[INTEGER]]
-- In first two examples (is_positive andover_threshold)

PREDICATE[EMPLOYEE, TUPLE[EMPLOYEE]]
-- In theis_marriedexample

intlist .for_all (~some_criterion(e1, ?, e2, e3))

emplist. for_all ({ EMPLOYEE} ~some_function(e4, e5)

Thisassumesagain that
CC is non-generic, so
that it is both a class
and a type. Remember
that aPREDICATEis a
FUNCTIONwith a
BOOLEAN result type.

§25.16 USING AGENTS 673
assuming inCC andEMPLOYEE, respectively, the functions

for arbitrary typesT1, ...,T5. Since operandse1, ...,e5are closed in the calls,
these types do not in any way affect the types of the call expressions, which
remain as above:PREDICATE [CC, TUPLE [INTEGER]] and
PREDICATE[EMPLOYEE, TUPLE[EMPLOYEE]].

Let us now see how to write the iterator mechanisms themselves, such
asfor_all. They should be available in all classes representing traversable
structures, so they must be introduced in a high-level class of EiffelBase,
TRAVERSABLE[G]. Some of the iterators are unconditional, such as

This uses the four fundamental iteration facilities, all declared in the most
general form possible asdeferredfeatures inTRAVERSABLE: start to
position the iteration cursor at the beginning of the structure;forth to
advance the cursor to the next item in the structure;off to tell us if we have
exhausted all items (not off is a precondition offorth); and item to return
the item at cursor position.

The argumentaction is declared asROUTINE [ANY, TUPLE [G]] ,
meaning that we expect a routine with an arbitrary base type, with an open
operand of typeG, the formal generic parameter ofTRAVERSABLE,
representing the type of the elements of the traversable structure. Feature
item indeed returns a result of typeG (representing the element at cursor
position), so that it is valid to pass as argument the one-argument tuple
[item] in the callaction. call ([item]) that the loop repeatedly executes.

We normally expectaction to denote a procedure, so its type could be more
accurately declared asPROCEDURE[ANY, TUPLE [G]] . UsingROUTINE
leaves open the possibility of passing a function, even though the idea of
treating a function as an action does not conform to the Command-Query
Separation principle of the Eiffel method.

some_criterion(a1: T1; i: INTEGER; a2: T2; a3: T3) -- In CC

some_function(a4: T4; a5: T5) -- In EMPLOYEE

do_all (action: ROUTINE[ANY, TUPLE [G]]) is
-- Apply action to every item of the structure in turn.

require
… Appropriate preconditions …

do
from startuntil off loop

action.call ([item])
forth

end
end

Descendants ofTRA-
VERSABLEeffect these
featuresinvariousways
to provide iteration
mechanisms on lists,
hash tables, trees and
many other structures.

AGENTS, ITERATION AND INTROSPECTION §25.16674
Wheredo_all appliesaction to all elements of a structure, other iterators
provide conditional iteration, selecting applicable items through another
call expression argument,test. Here is the “while” iterator:

Note how the algorithm appliescall to action, representing a routine
(normally a procedure), anditem to test, representing a boolean-valued
function. In both cases the argument is the one-element tuple[item].

The iterators ofTRAVERSABLEcover common control structures:
while_do; do_while (same aswhile_dobut with “test at the end of the
loop”, that is to say, applyaction to all items up toand includingfirst one
satisfyingtest); until_do; do_until; do_if.

Yet another of the iterators ofTRAVERSABLEis for_all, which we used
in the examples. It is easy to write afor_all loop algorithm similar to the
preceding ones, but easier yet to definefor_all in terms ofwhile_do:

Proceduredo_nothing, from classANY, has no effect; here we simply apply
it as long astest is true of successive items. If we find ourselvesoff then
for_all should return true; otherwise we have found an element not
satisfying thetest.

while_do
(action: ROUTINE[ANY, TUPLE[G]]
test: PREDICATE[ANY, TUPLE[G]]) is

-- Apply action to every item of structure up to,
-- but not including, first one not satisfyingtest.
-- If all satisfytest, apply to all items and moveoff.

require
… Appropriate preconditions …

do
from startuntil

off or else not test.item([item])
loop

action. call ([item])
forth

end
end

for_all (test: PREDICATE[G, TUPLE[G]]): BOOLEANis
-- Do all items satisfytest?

require
… Appropriate preconditions …

do
while_do(~do_nothing, test)
Result:= off

end

→ do_nothing is cited
in 30.6, page 796.

§25.17 INLINE AGENTS 675
Assuming a proper definition ofdo_until, the declaration ofexists,
providing the second basic quantifier of predicate calculus, is nicely
symmetric withfor_all:

25.17 INLINE AGENTS

Agents as seen so far do not name their open operands, representing them
instead by question marks in~is_positive(?), by a type in braces in
{ EMPLOYEE} ~ is_married, or just leaving them implicit in~is_positive.

As previewed at the beginning of this chapter there is also an inline
variant, where you name the open operands. Its distinctive mark is the
vertical bar|. Two examples defining function agents are

equivalent respectively to~ is_positive(?) and{EMPLOYEE} ~ is_married.
The outermost parentheses are not part of the syntax forInline_agent, but will
be included in the examples for clarity. The common case of using an inline
agent as routine argument requires parentheses anyway, as in

You may include two or more open operands of the same type, as in

which represents a boolean-valued operation that, given two objects of type
EMPLOYEE, returns true if and only it the querysalary yields a higher
result for the first than for the second.

For operands of different types, use successive vertical bars:

These were all examples definingfunction agents; accordingly, the part
after the vertical bar was an expression. It is also possible to define inline
procedureagents; in that case the definition uses one or more instructions

exists(test: PREDICATE[G, TUPLE[G]]): BOOLEANis
-- Does at least one item satisfytest?

require
… Appropriate preconditions …

do
do_until(~do_nothing, test)
Result:= not off

end

(i: INTEGER| is_positive(i))
(e: EMPLOYEE| e.is_married)

emplist. for_all (e: EMPLOYEE| e.is_married)

(e, f: EMPLOYEE| e.salary> f.salary)

(e, f: EMPLOYEE| p: POSITION| (e.job = p) and (f.job = p))

~ is_positive means the
sameas~is_positive(?).

AGENTS, ITERATION AND INTROSPECTION §25.17676
enclosed in the keywordsdo … end, as in the following example, using an
inline agent passed as argument to an iterator, which will raise by 10
percent the salary of every employee of first name “Bertrand”:

Inline agents do not give us anything fundamentally new, since we can
always rewrite them as non-inline agents — of the form discussed in
preceding sections, using tildes — after defining appropriate functions. For
example we can rewrite the next-to-last one as~same_job, or
~same_job(?, ?, ?), with the function definition

Although this tells us that in principle we could do without inline agents,
they are useful if you want to avoid writing functions such assame_job
when their only purpose is to define agents.

This case arises in particular for agents that express advanced contract
specifications. Here is a typical example. Assume that in a class describing
sequentially extendible structures (such asLIST[G]) you write a procedure
that appends an element. It might include a postcondition as follows:

emplist.do_all (e: EMPLOYEE|
do

if equal (e.first_name,once"Bertrand") then
e.set_salary (1.1∗ e.salary)

end
end)

same_job(a, b: EMPLOYEE; pos: POSITION): BOOLEANis
-- Do a andb both have positionpos?

do
Result:= ((a.job = pos) and (b.job = pos))

end

extend(x: G) is
-- Add x at end; keep other items

require
...

do
...

ensure
one_more: count= old count + 1
added_at_end: item(count) = x
others_unchanged: (1 |..|old count).for_all

(i: INTEGER| item (i) = (old twin). item (i))
end

→Definingthestringas
once is not strictly nec-
essary but improves per-
formance by avoiding
repeated evaluations;
see“Once strings and
the semantics of mani-
fest strings”, page 704

§25.17 INLINE AGENTS 677
In the last postcondition clause — the one of interest for this discussion —
1 |..|old count is the interval from 1 toold count, to whose itemsfor_all
applies the agent property on the following line. The property expresses
that the item at positioni, for arbitraryi, is equal to the original item at that
position (more precisely, to the item at positioni in old twin, a copy of the
list taken on entry to the procedure). This is typical of how agents enable
us to express non-trivial postcondition or invariant properties, stating that
a whole set of items have not changed, or have a certain association with
the corresponding set of items in another structure.

We could restate the inline agent (the argument tofor_all) in non-inline
form as~equal_item(old twin, ?), but this assumes a function

If you want to specify your software completely — expressing not only
straightforward properties such asitem(count) = x, but also those involving
entire substructures — you may end up writing many such functions.
Although they add interesting information, one may also feel that, being
only used for assertions, they needlessly complicate the class. They may
destabilize the software since any effort at better specification may cause
the addition of a whole set of new features, used only in the assertions and
of no other interest to clients of the class. Inline agents solve this problem.

Here is another example application of inline agents. The agents
described in this chapter represent delayedcalls; you may have wondered
whether we also need an expression construct to denote delayedobject
creation, perhaps something like~ create{ SOME_TYPE} .make(a1,?).
The answer is no, since we can achieve the intended effect (assuming we
need it) by using a creation expression as part of an inline agent in

whereB is the type ofmake’s second argument.

Inline agents, such asl: like Current | i: INTEGER| item(i) = l.item(i),
are like little routine declaration; in fact we could call themanonymous
routines, similar to anonymousclasses(tuple types) and anonymousobjects
(tuples). It’s as we had writtenequal_iteminline and without a routine name.

Inline and non-inline agents, however, are not completely
interchangeable. More precisely, every inline agent has a non-inline
equivalent (illustrated in the last example by the form usingequal_item);
but the converse is not always true, because inline agents only provide a
restricted form of anonymous routine.

equal_item(l: like Current; i: INTEGER): BOOLEANis
-- Is item at positioni equal to corresponding one inl?

do
Result:= (item (i) = l.item (i))

end

b1: B | create{ SOME_TYPE} .make(a1, b1)

AGENTS, ITERATION AND INTROSPECTION §25.18678
In particular, an explicit (non-anonymous) routine such asequal_item
may have, apart from argument declarations and aRoutine_body(do
clause), other clauses such asPrecondition, PostconditionandRescue. An
inline agentargs: SOME_TYPE|exprcan only specify its operandsargsand
a resultexpression, equivalent to ado clause with a single instruction of the
form Result:= expr. If you want anything else — assertions, or exception
handling — you must write a non-anonymous routine such asequal_item
and use it to define a non-inline agent.

25.18 SYNTAX, VALIDITY AND SEMANTICS OF INLINE AGENTS

We have now seen all the agent-related mechanisms; there remains to study
the precise validity and semantics. This will introduce no new concept, so
on first reading you may skip to the next chapter.

It is convenient to start with inline agents by showing how to define their
validity and semantics in terms of the more general case, non-inline agents,
detailed in the next sections. Here is the syntax of inline agents,
distinguished by the vertical bar|:

Entity_declaration_group, a construct seen in thediscussionof routines,
represents sequences of entities followed by a colon and a type name, as in

This serves to declare the listed entities as being of typeT.

You may not use anEntity_declaration_list, which could involve more
than oneEntity_declaration_groupand hence more than one type, as in
a, b: T1; c: T2, since this would be ambiguous (at least to the human
reader); but you can obtain the same effect by using successive groups
separated by vertical bars, as in the inline agent

Note that theAgents_formalsis optional: you may define agents without
formal arguments, such as

Inline_agent=∆ [Agent_formals] "|" Inline_body
Agent_formals=∆ {Entity_declaration_group "|" …} +

Inline_body=∆ {Expression| Inline_procedure} +

Inline_procedure=∆ do Compoundend} +

a, b, c: T

a, b: INTEGER| c: REAL| a + b > c

| p + q > r -- wherep, q, r are queries of the class
| create{ SOME_TYPE} .make(some_entity)
| f -- wheref is a query of the class; same meaning as~ f

← Page266.

§25.18 SYNTAX, VALIDITY AND SEMANTICS OF INLINE AGENTS 679
Some terminology will be useful

This enables us to consider that an inline agent is derived from an
anonymous routine:

This definition allows us to treat inline agents like non-inline ones

This will spare us the need to define the semantics of inline agents; we can
just rely on the next section’s specification of the non-inline case.

This approach is applicable to the validity rule as well; but here,
to enable compilers to provide directly usable messages in case of
an erroneous inline agent, it is useful to provide a direct rule,
derived through the above definitions from theFormal Argument
rule of routines:

Formal arguments, defining expression of an inline agent
The formal arguments (or operands) of an inline agent are the
entities listed in anyEntity_declaration_groupof its Agent_formals
part. Itsbody is its Inline_bodypart.

Associated routine of an inline agent
Theassociated routineof an inline agentia is a fictitious routine
r, declared in the enclosing classC as follows:
• The name ofr is chosen not to conflict with any other feature

name inC and its descendants.

• The formal arguments ofr are the same as those ofia, if any.

• If the body of ia is an Expressionexp, then r is a function
whose result type is the type ofexp and whose body is of
the do form, containing the single instructionResult:= exp,
and has none of the optional clauses (Precondition,
Postcondition, Rescue).

• Otherwise the body ofia is an Inline_procedureand r is a
procedure whoseRoutine_body is the body ofia.

Non-inline form of an inline agent
The validity and semantics of an inline agentia are those
of its non-inline form : the agent~ af, where af is ia’s
associated routine.

“Formal argument”
recalls the connection
with routines; “oper-
and”, the open oper-
ands of an agent. So
both names are useful.

← Formal Argument
rule: page266.

AGENTS, ITERATION AND INTROSPECTION §25.19680
The validity of theInline_bodypart doesn’t require any particular rule; it is
covered by theEntity rule, which states that any entity appearing in the
Inline_bodymust be a formal argument of the inline agent itself (such asl
and i in l: like Current | i: INTEGER| item (i) = l.item (i)) or otherwise
legal from the context (feature of the enclosing class, formal argument or
local entity of the enclosing routine).

25.19 VALIDITY AND SEMANTICS OF FEATURE AGENTS
It remains to provide the validity and semantic rules of non-inline agent
expressions, complementing the syntax already given. This material may,
like the previous section, be skipped on first reading.

For ease of reference here isa repetition of the syntax productions:

To define the validity of an agent expression we need to be able to consider
its “target type”, explicit or implicit:

Inline Agent rule CPIA

An Inline_agentia appearing in a classC is valid if and only if the
list of identifiers formals obtained by concatenating every
Identifier_list of every Entity_declaration_groupin the Agent_
formals part ofia, if any, satisfies the following two conditions:
1 • No Identifier appears twice informals.

2 • No Identifier e appearing informals is the final name of a
feature ofC, or of a formal argument or local entity of the
enclosing routine if any.

Feature_agent=∆ [Agent_target] Agent_unqualified
Agent_target=∆ Entity |Parenthesized|Type_descriptor

Type_descriptor=∆ Explicit_type_descriptor|Placeholder
Explicit_type_descriptor=∆ "{" Type"}"

Placeholder=∆ "?"
Agent_unqualified=∆ "~" Feature_name[Agent_actuals]

Agent_actuals=∆ "(" Agent_actual_list ")"
Agent_actual_list=∆ {Agent_actual "," …}

Agent_actual=∆ Actual |Type_descriptor

Target type of an agent expression
The target type of aFeature_agent is:
1 • If there is noAgent_target, or an Agent_targetwhich is a

Type_descriptor of thePlaceholder kind, thecurrent type.
2 • If there is aAgent_targetand it is anEntity or Parenthesized,

its type.
3 • If there is aAgent_targetand it is aType_descriptorof the

Explicit_type_descriptorkind, the type that it lists (in braces).

← “Entity rule”,
page 517.

← These productions
first appeared on pages
664 and665.

← The “current type”
is the enclosing class,
withgenericparameters
added if necessary to
make up a type. See
“CURRENT TYPE,
FEATURES OF A
TYPE”, 12.8,page384.

§25.19 VALIDITY AND SEMANTICS OF FEATURE AGENTS 681
This is enough to introduce the validity rule, which also defines the notion
of “associated feature” of an agent expression:

Clause6 is a consistency condition for concurrent computation, and parallels
a similar clause discussed in the chapter on normal calls.

The rule’s phrasing makes certain forms of the construct automatically valid:
• If any Agent_actualis of thePlaceholderkind, represented simply by a

question mark, neither clause4 nor clause5 applies, so the argument
raises no type validity problem. This is as expected, since such an
argument is left open for future filling-in.

• If there is noAgent_actualspart, clauses3 to 5 do not apply. Iff has no
formals, we are calling an argumentless feature with no actuals, as we
should. Iff has one or more formal arguments, we view the absence of
explicit actuals of an abbreviation for actuals that are all of the
Placeholderkind (question marks): assumingf takes three arguments,
a0~ f is simply an abbreviation fora0~ f (?, ?, ?). In this case the
implicit arguments are all open, and hence automatically valid.

We may formalize the last observation through a definition which will also
be useful for the semantics:

Agent Expression rule CPAE

A Feature_agentappearing in a classC, with a feature identifier
fi and target typeT0, is valid if and only if it satisfies the
following six conditions:
1 •fi is the name of a feature ofT0, called theassociated feature

of the agent.
2 • If there is aAgent_target, that feature is export-valid forT0 in C.
3 • If theAgent_actualspart is present, the number of elements in

its Agent_actual_list is equal to the number of formals off.
4 • Any Agent_actualof theActualkind is of a type conforming to

the type of the corresponding formal inf.
5 • Any Agent_actual which is a Type_descriptor of the

Explicit_type_descriptorkind lists, between the braces, a type
conforming to the type of the corresponding formal inf.

6 • If T0 is separate, any non-expanded formal off is separate.

Unfolded form of an agent expression
The unfolded form of aFeature_agentdc is:
• dc itself if it includes anAgent_actualspart, or if the associated

feature has no formals.
• Otherwise,dc extended with aAgent_actualspart made up

of the appropriate number ofAgent_actualcomponents, all
of thePlaceholder (question mark) kind.

AGENTS, ITERATION AND INTROSPECTION §25.19682
We now have enough to define the semantics of an agent expression:

Although this will be an implicit consequence of the preceding description,
it doesn’t hurt to state explicitly what some of the information inD0 is good
for: enabling calls on agent objects.

Type and value of an agent expression
Consider aFeature_agentd, whose associated featuref has a
generating typeT0. Let i1, …, im (m ≥ 0) be itsopenoperand
positions, if any, and letTi1, .., Tim be the types off’s formals at
positionsi1, …, im (takingTi1 to beT0 if i1 = 0).
The type ofd is:
• PROCEDURE[T0, TUPLE [Ti1, ..,Tim]] if f is a procedure;

• FUNCTION [T0, TUPLE [Ti1, .., Tim], R] if is a function of
result typeR.

Evaluatingd at a certainconstruction timeyields a reference to
an instanceD0of the typeofd, containing information identifying:
• f.

• The open operand positions.

• The values of the closed operands at the time of evaluation ofd.

Effect of executingcall on an agent
Let D0 be an agent object with associated featuref and open
positionsi1, …, im (m≥ 0). The information inD0 enables a call
to procedurecall, executed at anycall time posterior toD0’s
construction time, with targetD0 and (if required) actual
argumentsai1, ..,aim, to perform the following:
• Produce the same effect as a call tof, using the closed operands

at the closed positions andai1, .., aim, evaluated at call time, at
the open positions.

• In addition, iff is a function, setting the value ofquerylast_result
for D0 to the result returned by such a call.

← “Open operand posi-
tion” was defined on
page666.

← last_resultfrom class
FUNCTION, giving the
result of the last evalua-
tion, was introduced on
page655.

	25 25 Agents, iteration and introspection
	25.1 OVERVIEW
	25.2 A QUICK PREVIEW
	25.3 NORMAL CALLS
	Operands of a call
	Operand position

	25.4 FROM CALLS TO AGENTS
	Construction time, call time

	25.5 WHAT IS AN AGENT EXPRESSION?
	25.6 AGENT EXPRESSIONS
	25.7 KEEPING OPERANDS OPEN
	25.8 EXPLICIT TYPES FOR OPEN OPERANDS
	25.9 LEAVING THE TARGET OPEN
	25.10 A SUMMARY OF THE POSSIBILITIES
	How agent expressions are made

	25.11 TWO ADVANCED EXAMPLES
	25.12 AGENT EXPRESSION SYNTAX
	Open and closed operands
	Open and closed operand positions

	25.13 COMPLETELY OPEN AGENTS
	25.14 ACCESSING FEATURE PROPERTIES
	25.15 THE BASE CLASS AND TYPE
	25.16 USING AGENTS
	25.17 INLINE AGENTS
	25.18 SYNTAX, VALIDITY AND SEMANTICS OF INLINE AGENTS
	Formal arguments, defining expression of an inline agent
	Associated routine of an inline agent
	Non-inline form of an inline agent

	25.19 VALIDITY AND SEMANTICS OF FEATURE AGENTS
	Target type of an agent expression
	Unfolded form of an agent expression
	Type and value of an agent expression
	Effect of executing call on an agent

