
An Eiffel Tutorial

Interactive Software Engineering

§2

orage)

r use or
Manual identification

Title: An Eiffel Tutorial, ISE Technical Report TR-EI-66/TU.

Publication history

First published July 2001. Corresponds to release 5.0 of the ISE Eiffel environment.

Author

Bertrand Meyer.

Software credits

See acknowledgments in bookEiffel: The Language.

Cover design

Rich Ayling.

Copyright notice and proprietary information

Copyright © Interactive Software Engineering Inc. (ISE), 2001. May not be reproduced in any form (including electronic st
without the written permission of ISE. “Eiffel Power” and the Eiffel Power logo are trademarks of ISE.

All uses of the product documented here are subject to the terms and conditions of the ISE Eiffel user license. Any othe
duplication is a violation of the applicable laws on copyright, trade secrets and intellectual property.

Special duplication permission for educational institutions

Degree-granting educational institutions using ISE Eiffel for teaching purposes as part of theEiffel UniversityPartnershipProgram
may be permitted under certain conditions to copy specific parts of this book. Contact ISE for details.

About ISE
ISE (Interactive Software Engineering) helps you produce software better, faster and cheaper.

ISE provides a wide range of products and services based on object technology, including ISE Eiffel, a complete
development environment for the full system lifecycle. ISE’s training courses, available worldwide, cover key management
and technical topics. ISE’s consultants are available to address your project needs at all levels.

ISE’s TOOLS (Technology of Object-Oriented Languages and Systems) conferences,http://www.tools-
conferences.com, are the meeting point for anyone interested in the software technologies of the future.

ISE originated one of the earliest .NET products and offers a full range of .NET services and training at
http://www.dotnetexperts.com.

For more information
Interactive Software Engineering Inc.
ISE Building, 360 Storke Road
Goleta, CA 93117 USA
Telephone 805-685-1006, Fax 805-685-6869

Internet and e-mail
ISE maintains a rich source of information athttp://eiffel.com, with more than 1200 Web pages including online
documentation, downloadable files, product descriptions, links to ISE partners, University Partnership program, mailing
list archives, announcements, press coverage, Frequently Asked Questions, Support pages, and much more.

Visit http://contact.eiffel.com to request information about products and services. To subscribe to the ISE Eiffel user
list, go towww.talkitover.com/eiffel/users.

Support programs
ISEoffersavarietyof supportoptions tailored to thediverseneedsof its customers.Seehttp://support.eiffel.com fordetails.

http://www.eiffel.com/services/university/
http://eiffel.com
http://www.eiffel.com/doc/page.html#etl
http://contact.eiffel.com
http://www.talkitover.com/eiffel/users
http://www.tools-conferences.com
http://www.tools-conferences.com
http://www.dotnetexperts.com
http://support.eiffel.com

An Eiffel tutorial
1 OVERVIEW

Eiffel is a method and language for the efficient description and development of
quality systems.

As a language, Eiffel is more than a programming language. It covers not just
programming in the restricted sense of implementation but the whole spectrum of
software development:

• Analysis, modeling and specification, where Eiffel can be used as a purely
descriptive tool to analyze and document the structure and properties of complex
systems (even non-software systems).

• Designandarchitecture, where Eiffel can be used to build solid, flexible system
structures.

• Implementation, where Eiffel provides practical software solutions with an
efficiency comparable to solutions based on such traditional approaches as C and
Fortran.

• Maintenance, where Eiffel helps thanks to the architectural flexibility of the
resulting systems.

• Documentation, where Eiffel permits automatic generation of documentation,
textual and graphical, from the software itself, as a partial substitute for separately
developed and maintained software documentation.

This document is available both locally, as part of the ISE Eiffel delivery,
and on theeiffel.comWeb site, in both HTML and PDF versions. See the
list of introductory documents.
This is not an introduction to the EiffelStudio development environment.
Follow the preceding link for a Guided Tour of EiffelStudio (HTML or PDF).

You will also find there a shorter introduction: “Invitation to Eiffel”.

http://www.eiffel.com/doc/manuals/getting_started/index.html
../index.html

AN EIFFEL TUTORIAL §24
Although the language is the most visible part, Eiffel is best viewed as amethod, which
guides system analysts and developers through the process of software construction. The
Eiffel method is focused on both productivity (the ability to produce systems on time and
within budget) and quality, with particular emphasis on the following quality factors:

• Reliability: producing bug-free systems, which perform as expected.

• Reusability: making it possible to develop systems from prepackaged, high-
quality components, and to transform software elements into such reusable
components for future reuse.

• Extendibility: developing software that is trulysoft — easy to adapt to the
inevitable and frequent changes of requirements and other constraints.

• Portability: freeing developers from machine and operating system peculiarities,
and enabling them to produce software that will run on many different platforms.

• Maintainability: yielding software that is clear, readable, well structured, and easy
to continue enhancing and adapting.

2 GENERAL PROPERTIES

Here is an overview of the facilities supported by Eiffel:

• Completelyobject-orientedapproach. Eiffel is a full-fledged application of object
technology, not a “hybrid” of O-O and traditional concepts.

• External interfaces. Eiffel is a software composition tool and is easily interfaced
with software written in such languages as C, C++, Java and C#.

• Full lifecycle support. Eiffel is applicable throughout the development process,
including analysis, design, implementation and maintenance.

• Classesas the basic structuring tool. A class is the description of a set of run-time
objects, specified through the applicable operations and abstract properties. An
Eiffel system is made entirely of classes, serving as the only module mechanism.

• Consistent type system. Every type is based on a class, including basic types such
as integer, boolean, real, character, string, array.

• Design by Contract. Every system component can be accompanied by a precise
specification of its abstract properties, governing its internal operation and its
interaction with other components.

• Assertions. The method and notation support writing the logical properties of object
states, to express the terms of the contracts. These properties, known as assertions,
can be monitored at run-time for testing and quality assurance. They also serve as
documentation mechanism. Assertions include preconditions, postconditions, class
invariants, loop invariants, and also appear in “check” instructions.

§2 GENERAL PROPERTIES 5
• Exception handling. You can set up your software to detect abnormal conditions,
such as unexpected operating system signals and contract violations, correct them,
and recover

• Information hiding. Each class author decides, for each feature, whether it is
available to all client classes, to specific clients only, or just for internal purposes.

• Self-documentation. The notation is designed to enable environment tools to
produce abstract views of classes and systems, textual or graphical, and suitable
for reusers, maintainers and client authors.

• Inheritance. You can define a class as extension or specialization of others.
• Redefinition. An inherited feature (operation) can be given a different

implementation or signature.
• Explicit redefinition. Any feature redefinition must be explicitly stated.
• Subcontracting. Redefinition rules require new assertions to be compatible with

inherited ones.
• Deferred features and classes. It is possible for a feature, and the enclosing class,

to be specified — including with assertions — but not implemented. Deferred
classes are also known as abstract classes.

• Polymorphism. An entity (variable, argument etc.) can become attached to objects
of many different types.

• Dynamic binding. Calling a feature on an object always triggers the version of the
feature specifically adapted to that object, even in the presence of polymorphism
and redefinition.

• Static typing. A compiler can check statically that all type combinations will be
valid, so that no run-time situation will occur in which an attempt will be made to
apply an inexistent feature to an object.

• Assignment attempt(“type narrowing”). It is possible to check at run time whether
the type of an object conforms to a certain expectation, for example if the object
comes from a database or a network.

• Multiple inheritance. A class can inherit from any number of others.
• Feature renaming. To remove name clashes under multiple inheritance, or to give

locally better names, a class can give a new name to an inherited feature.
• Repeated inheritance: sharing and replication. If, as a result of multiple

inheritance, a class inherits from another through two or more paths, the class
author can specify, for each repeatedly inherited feature, that it yields either one
feature (sharing) or two (replication).

• No ambiguity under repeated inheritance. Conflicting redefinitions under repeated
inheritance are resolved through a “selection” mechanism.

• Unconstrained genericity. A class can be parameterized, or “generic”, to describe
containers of objects of an arbitrary type.

AN EIFFEL TUTORIAL §26
• Constrained genericity. A generic class can be declared with a generic constraint,
to indicate that the corresponding types must satisfy some properties, such as the
presence of a particular operation.

• Garbage collection. The dynamic model is designed so that memory reclamation,
in a supporting environment, can be automatic rather than programmer-controlled.

• No-leak modular structure. All software is built out of classes, with only two inter-
class relations, client and inheritance.

• Once routines. A feature can be declared as “once”, so that it is executed only for
its first call, subsequently returning always the same result (if required). This
serves as a convenient initialization mechanism, and for shared objects.

• Standardized library. The Kernel Library, providing essential abstractions, is
standardized across implementations.

• Other libraries. Eiffel development is largely based on high-quality libraries
covering many common needs of software development, from general algorithms
and data structures to networking and databases.

It is also useful, as in any design, to list some of what isnot present in Eiffel. The
approach is indeed based on a small number of coherent concepts so as to remain easy to
master. Eiffel typically takes a few hours to a few days to learn, and users seldom need to
return to the reference manual once they have understood the basic concepts. Part of this
simplicity results from the explicit decision to exclude a number of possible facilities:

• No global variables, which would break the modularity of systems and hamper
extendibility, reusability and reliability.

• No union types(or record type with variants), which force the explicit enumeration
of all variants; in contrast, inheritance is an open mechanism which permits the
addition of variants at any time without changing existing code.

• No in-class overloadingwhich, by assigning the same name to different features
within a single context, causes confusions, errors, and conflicts with object-
oriented mechanisms such as dynamic binding. (Dynamic binding itself is a
powerful form of inter-class overloading, without any of these dangers.)

• No goto instructionsor similar control structures (break, exit, multiple-exit loops)
which break the simplicity of the control flow and make it harder or impossible to
reason about the software (in particular through loop invariants and variants).

• No exceptions to the type rules. To be credible, a type system must not allow
unchecked “casts” converting from a type to another. (Safe cast-like operations are
available through assignment attempt.)

• No side-effect expression operators confusing computation and modification.

• No low-level pointers, no pointer arithmetic, a well-known source of bugs. (There is
however a typePOINTER, used for interfacing Eiffel with C and other languages.)

§3 THE SOFTWARE PROCESS IN EIFFEL 7
3 THE SOFTWARE PROCESS IN EIFFEL

Eiffel, as noted, supports the entire lifecycle. The underlying view of the system
development lifecycle is radically different not only from the traditional “Waterfall”
model (implying a sequence of discrete steps, such as analysis, global design, detailed
design, implementation, separated by major changes of method and notation) but also
from its more recent variants such as the spiral model or “rapid prototyping”, which
remain predicated on a synchronous, full-product process, and retain the gaps between
successive steps.

Clearly, not everyone using Eiffel will follow to the letter the principles outlined
below; in fact, some highly competent and successful Eiffel developers may disagree
with some of them and use a different process model. In the author’s mind, however,
these principles fit best with the language and the rest of the method, even if practical
developments may fall short of applying their ideal form.

Clusters and the cluster model

Unlike earlier approaches, the Eiffel model assumes that the system is divided into a
number of subsystems orclusters. It keeps from the Waterfall a sequential approach to
the development of each cluster (without the gaps), but promotesconcurrent
engineering for the overall process, as suggested by the following picture:.

Cluster 1

Cluster 2

Cluster n

PROJECT TIME

The cluster
model:
sequential and
concurrent
engineering

AN EIFFEL TUTORIAL §38
The Eiffel techniques developed below, in particular information hiding and Design by
Contract, make the concurrent engineering process possible by letting the clusters rely
on each other through clearly defined interfaces, strictly limiting the amount of
knowledge that one must acquire to use the cluster, and permitting separate testing.
When the inevitable surprises of a project happen, the project leader can take advantage
of the model’s flexibility, advancing or delaying various clusters and steps through
dynamic reallocation of resources.

Each of the individual cluster lifecycles is based on a continuous progression of
activities, from the more abstract to the more implementation-oriented:

You may view this picture as describing a process of accretion (as with a stalactite),
where each stepsenrichesthe results of the previous one. Unlike traditional views,
which emphasize the multiplicity of software products — analysis document, global
and detailed design documents, program, maintenance reports… —, the principle is
here to treat the software as asingle productwhich will be repeatedly refined, extended
and improved. The Eiffel language supports this view by providing high-level notations
that can be used throughout the lifecycle, from the most general and software-
independent activities of system modeling to the most exacting details of
implementation tuned for optimal run-time performance.

These properties make Eiffel span the scope of both “object-oriented methods”,
with their associated notations such as UML and supporting CASE tools (whereas most
such solutions do not yield an executable result), and “programming languages”
(whereas most such languages are not suitable for design and analysis).

*V&V: Validation and Verification

Analysis

Design

Implemen-
tation

V&V*

Genera-
lization

Individual
cluster
lifecycle

§3 THE SOFTWARE PROCESS IN EIFFEL 9
Seamlessness and reversibility

The preceding ideas define theseamless approachembodied by Eiffel. With
seamlessness goesreversibility : the ability to go back, even late in the process, to
earlier stages. Because the developers work on a single product, they can take
advantages of bouts of late wisdom — such as a great idea for adding a new function,
discovered only at implementation time — and integrate them in the product.
Traditional approaches tend to discourage reversibility because it is difficult to
guarantee that the analysis and design will be updated with the late changes. With the
single-product principle, this is much easier to achieve.

Seamlessness and reversibility enhance extendibility by providing a direct
mapping from the structure of the solution to the structure of the problem description,
making it easier to take care of customers’ change requests quickly and efficiently.
They promote reliability, by avoiding possible misunderstandings between customers’
and developers’ views. They are a boost to maintainability. More generally, they yield
a smooth, consistent software process that helps both quality and productivity.

Generalization and reuse

The last step of the cluster lifecycles, Generalization, is unheard of in traditional
models. Its task is to prepare the results of a cluster for reuse across projects by looking
for elements of general applicability, and transform them for inclusion in libraries.

Recent object-oriented literature has used the term “refactoring” to describe a
process of continuous improvement of released software. Generalization includes
refactoring, but also pursues a more ambitious goal: helping turnprogram elements
(software modules useful only as part of a certain program) intosoftware components
— reusable parts with a value of their own, ready to be used by diverse programs that
can benefit from their capabilities.

Of course not all companies using the method will be ready to include a
Generalization phase in their lifecycles. But those which do will see the reusability of
their software greatly improved.

Constant availability

Complementing the preceding principles is the idea that, in the cluster lifecycle, the
development team (under the responsibility of the project leader) should at all times
maintain acurrent working demowhich, although covering only a part of the final
system, works well, and can be demonstrated or — starting at a suitable time —
shipped as an early release. It is not a “prototype” in the sense of a mockup meant to be
thrown away, but an initial iteration towards the final product; the successive iterations
will progress continuously towards until they become that final product.

AN EIFFEL TUTORIAL §310
Compilation technology

The preceding goals benefit from the ability to check frequently that the current
iteration is correct and robust. Eiffel supports efficient compilation mechanisms
through such mechanisms as theMelting Ice Technology in ISE’s EiffelStudio. The
Melting Ice achieves immediate recompilation after a change, guaranteeing a
recompilation time that’s a function of the size of thechanges, not of the system’s
overall size. Even for a system of several thousand classes and several hundred
thousand lines, the time to get restarted after a change to a few classes is, on a typical
modern computer, a few seconds.

Such a “melt” (recompilation) will immediately catch (along with any syntax
errors) the type errors — often the symptoms of conceptual errors that, if left
undetected, could cause grave damage later in the process or even during operation.
Once the type errors have been corrected, the developers should start testing the new
functionalities, relying on the power ofassertions— explained in“DESIGN BY
CONTRACTTM, ASSERTIONS, EXCEPTIONS”, page38 — to kill the bugs while
they are still larvae. Such extensive unit and system testing, constantly interleaved with
development, plays an important part in making sure that the “current demo” is
trustworthy and will eventually yield a correct and robust product.

Quality and functionality

Throughout the process, the method suggests maintaining a constantquality level: apply
all the style rules, put in all the assertions, handle erroneous cases (rather than the all too
common practice of thinking that one will “make the product robust” later on), enforce
the proper architecture. This applies to all the quality factors except possibly reusability
(since one may not know ahead of time how best to generalize a component, and trying
to make everything fully general may conflict with solving the specific problem at hand
quickly). All that varies isfunctionality : as the project progresses and clusters come into
place, more and more of the final product’s intended coverage becomes available. The
project’s most common question , “Can we ship something yet?”, translates into “Do we
cover enough?”, not “Is it good enough?” (as in “Will it not crash?”).

Of course not everyone using Eiffel can, any more than in another approach,
guarantee that the ideal just presented will always hold. But it is the theoretical scheme to
which the method tends. It explains Eiffel’s emphasis on getting everything right: the
grandiose and the mundane, the structure and the details. Regarding the details, the Eiffel
books cited in the bibliography include many rules, some petty at first sight, about such
low-level aspects as the choice of names for classes and features (including their
grammatical categories), the indentation of software texts, the style for comments
(including the presence or absence of a final period), the use of spaces. Applying these
rules does not, of course, guarantee quality; but they are part of a quality-oriented process,

§4 HELLO WORLD 11
along with the more ambitious principles of design. In addition they are particularly
important for the construction of quality libraries, one of the central goals of Eiffel.

Whenever they are compatible with the space constraints, the present chapter and
the rest of this book apply these rules to their Eiffel examples.

4 HELLO WORLD

When discovering any approach to software construction, however ambitious its goals,
it is reassuring to see first a small example of the big picture — a complete program to
print the famous “Hello World” string. Here is how to perform this fascinating task in
the Eiffel notation.

You write a classHELLO with a single procedure, saymake, also serving as
creation procedure. If you like short texts, here is a minimal version:

In practice, however, the Eiffel style rules suggest a better documented version:

The two versions perform identically; the following comments will cover the more
complete second one.

Note the absence of semicolons and other syntactic clatter or clutter. You may in
fact use semicolons to separate instructions and declarations. But the language’s syntax

class HELLO create make feature
make is

do print ("Hello World%N ") end
end

indexing
description: "Root for trivial system printing a message"
author: "Elizabeth W. Brown"

class HELLO create
make

feature
make is

-- Print a simple message.
do

io.put_string ("Hello World ")
io.put_new_line

end
end -- class HELLO

AN EIFFEL TUTORIAL §412
is designed to make the semicolon optional (regardless of text layout) and it’s best for
readability to omit it, except in the special case of successive elements on a single line.

The indexing clause does not affect execution semantics; you may use it to
associate documentation with the class, so that browsers and other indexing and
retrieval tools can help users in search of reusable components satisfying certain
properties. Here we see two indexing entries, labeleddescription andauthor.

The name of the class isHELLO. Any class may contain “features”;HELLO has
just one, calledmake. The create clause indicates thatmake is a “creation
procedure”, that is to say an operation to be executed at class instantiation time. The
class could have any number of creation procedures.

The definition ofmake appears in afeature clause. There may be any number of
such clauses (to separate features into logical categories), and each may contain any
number of feature declarations. Here we have only one.

The line starting with-- (two hyphen signs) is a comment; more precisely it is a
“header comment”, which style rules invite software developers to write for every such
feature, just after theis . As will be seen in“The contractform of aclass”, page44, the
tools of EiffelStudio know about this convention and use it to include the header
comment in the automatically generated class documentation.

The body of the feature is introduced by thedo keyword and terminated byend .
It consists of two output instructions. They both useio, a generally available reference
to an object that provides access to standard input and output mechanisms; the notation
io.f, for some featuref of the corresponding library class (STD_FILES), means “apply
f to io”. Here we use two such features:

• put_string outputs a string, passed as argument, here"Hello World".

• put_new_line terminates the line.

Rather than using a call toput_new_line, the first version of the class simply includes a
new-line character, denoted as%N, at the end of the string. Either technique is acceptable.

To build the system and execute it:

• Start EiffelStudio

• When prompted, ask EiffelStudio to build a system for you; specifyHELLO as the
“root class” andmake as the “root procedure”.

• You can either use EiffelStudio to type in the above class text, or you may use any
text editor and store the result into a filehello.e in the current directory.

• Click the “Compile” icon.

• Click the “Run” icon.

Execution starts and outputsHello World on the appropriate medium: under Windows,
a Console; under Unix or VMS, the windows from which you started EiffelStudio.

§5 THE STATIC PICTURE: SYSTEM ORGANIZATION 13
5 THE STATIC PICTURE: SYSTEM ORGANIZATION

We now look at the overall organization of Eiffel software.

References to ISE-originated libraries appearing in subsequent examples include:
EiffelBase, the fundamental open-source library covering data structures and
algorithms; thekernel library , a subset of EiffelBase covering the most basic notions
such as arrays and strings; andEiffelVision 2, an advanced graphics and GUI library
providing full compatibility across platforms (Unix, Windows, VMS) with native
look-and-feel on each.

Systems

An Eiffel system is a collection of classes, one of which is designated as the root class.
One of the features of the root class, which must be one of its creation procedures, is
designated as the root procedure.

To execute such a system is to create an instance of the root class (an object created
according to the class description) and to execute the root procedure. In anything more
significant than “Hello World” systems, this will create new objects and apply features
to them, in turn triggering further creations and feature calls.

For the system to make sense, it must contains all the classes on which the root
dependsdirectly or indirectly. A classB depends on a classA if it is either aclient of
A, that is to say uses objects of typeA, or anheir of A, that is to say extends or
specializesA. (These two relations, client and inheritance, are covered below.)

Classes

The notion of class is central to the Eiffel approach. A class is the description of a type
of run-time data structures (objects), characterized by common operations (features)
and properties. Examples of classes include:

• In a banking system, a classACCOUNT may have features such asdeposit,
adding a certain amount to an account,all_deposits, yielding the list of deposits
since the account’s opening, andbalance, yielding the current balance, with
properties stating thatdeposit must add an element to theall_deposits list and
updatebalance by adding the sum deposited, and that the current value of
balance must be consistent with the lists of deposits and withdrawals.

• A classCOMMAND in an interactive system of any kind may have features such
asexecute andundo, as well as a featureundoable which indicates whether a
command can be undone, with the property thatundo is only applicable if
undoable yields the value true.

AN EIFFEL TUTORIAL §514
• A classLINKED_LIST may have features such asput, which adds an element to
a list, andcount, yielding the number of elements in the list, with properties
stating thatput increasescount by one and thatcount is always non-negative.

We may characterize the first of these examples as an analysis class, directly modeling
objects from the application domain; the second one as a design class, describing a
high-level solution; and the third as an implementation class, reused whenever possible
from a library such as EiffelBase. In Eiffel, however, there is no strict distinction
between these categories; it is part of the approach’s seamlessness that the same notion
of class, and the associated concepts, may be used at all levels of the software
development process.

Class relations

Two relations may exist between classes:

• You can define a classC as aclient of a classA to enable the features ofC to rely
on objects of typeA.

• You may define a classB as anheir of a classA to provideB with all the features
and properties ofA, lettingB add its own features and properties and modify some
of the inherited features if appropriate.

If C is a client ofA, A is asupplier of C. If B is an heir ofA, A is aparent of B. A
descendantof A is eitherA itself or, recursively, a descendant of an heir ofA; in more
informal terms a descendant is a direct or indirect heir, or the class itself. To excludeA
itself we talk ofproper descendant. In the reverse direction the terms areancestorand
proper ancestor.

The client relation can be cyclic; an example involving a cycle would be classes
PERSON andHOUSE, modeling the corresponding informal everyday “object” types
and expressing the properties that every person has a home and every home has an
architect. The inheritance (heir) relation may not include any cycle.

In modeling terms, client roughly represents the relation “has” and heir roughly
represents “is”. For example we may use Eiffel classes to model a certain system and
express that every childhas a birth date (client relation) andis a person (inheritance).

Distinctive of Eiffel is the rule that classes can only be connected through these
two relations. This excludes the behind-the-scenes dependencies often found in other
approaches, such as the use of global variables, which jeopardize the modularity of a
system. Only through a strict policy of limited and explicit inter-class relations can we
achieve the goals of reusability and extendibility.

§5 THE STATIC PICTURE: SYSTEM ORGANIZATION 15
The global inheritance structure

An Eiffel class that you write does not come into a vacuum but fits in a preordained
structure, shown in the figure and involving two library classes:ANY andNONE.

Any class that does not explicitly inherit from another is considered to inherit from
ANY, so that every class is a descendant, direct or indirect, ofANY. ANY introduces a
number of general-purpose features useful everywhere, such as copying, cloning and
equality testing operations (page28) and default input-output. The procedureprint
used in the first version of our “Hello World” (page11) comes fromANY.

NONE inherits from any class that has no explicit heir. Since inheritance has no
cycles,NONE cannot have proper descendants. This makes it useful, as we will see, to
specify non-exported features, and to denote the type of void values. UnlikeANY, class
NONE doesn’t have an actual class text; instead, it’s a convenient fiction.

Clusters

Classes are the only form of module in Eiffel. As will be explained in more detail, they
also provide the basis for the only form of type. This module-type identification is at
the heart of object technology and of the fundamental simplicity of the Eiffel method.

Above classes, you will find the concept of cluster. A cluster is a group of related
classes. Clusters are a property of the method, enabling managers to organize the
development into teams. As we have already seen (section3) they also play a central
role in the lifecycle model. Clusters are an organizational concept, not a form of
module, and do not require an Eiffel language construct.

ANY

NONE

… All developer-written
classes…

Global
inheritance
structure

AN EIFFEL TUTORIAL §616
External software

The subsequent sections will show how to write Eiffel classes with their features. In an
Eiffel system, however, not everything has to be written in Eiffel: some features may
beexternal, coming from languages such as C, C++, Java, C# Fortran and others. For
example a feature declaration may appear (in lieu of the forms seen later) as

to indicate that it is actually an encapsulation of a C function whose original name is
_ fstat. Thealias clause is optional, but here it is needed because the C name, starting
with an underscore, is not valid as an Eiffel identifier.

Similar syntax exists to interface with C++ classes. ISE Eiffel includes a tool
calledLegacy++ which will automatically produce, from a C++ class, an Eiffel class
that encapsulates its facilities, making them available to the rest of the Eiffel software
asbona fideEiffel features.

These mechanisms illustrate one of the roles of Eiffel: as an system architecturing
and software composition tool, used at the highest level to produce systems with robust,
flexible structures ready for extendibility, reusability and maintainability. In these
structures not everything must be written in the Eiffel language: existing software
elements and library components can play their part, with the structuring capabilities
of Eiffel (classes, information hiding, inheritance, clusters, contracts and other
techniques seen in this presentation) serving as the overall wrapping mechanism.

6 THE DYNAMIC STRUCTURE: EXECUTION MODEL

A system with a certain static structure describes a set of possible executions. The run-
time model governs the structure of the data (objects) created during such executions.

The properties of the run-time model are not just of interest to implementers; they
also involve concepts directly relevant to the needs of system modelers and analysts at
the most abstract levels.

file_status (filedesc: INTEGER): INTEGER is
-- Status indicator for filedesc

external
"C" alias "_fstat"

end

§6 THE DYNAMIC STRUCTURE: EXECUTION MODEL 17
Objects, fields, values and references

A class was defined as the static description of a a type of run-time data structures. The
data structures described by a class are calledinstancesof the class, which in turn is
called theirgenerating class(or just “generator”). An instance ofACCOUNT is a data
structure representing a bank account; an instance ofLINKED_LIST is a data structure
representing a linked list.

An object, as may be created during the execution of a system, is an instance of
some class of the system.

Classes and objects belong to different worlds: a class is an element of the
software text; an object is a data structure created during execution. Although is
possible to define a class whose instances represent classes (as classE_CLASS in the
ISE libraries, used to access properties of classes at run time), this does not eliminate
the distinction between a static, compile-time notion, class, and a dynamic, run-time
notion, object.

An object is either an atomic object (integer, real, boolean, double) or a composite
object made of a number offields, represented by adjacent rectangles on the
conventional run-time diagrams:

Each field is avalue. A value can be either an object or an object reference:

• When a field is an object, it will in most cases be an atomic object, as on the figure
where the first field from the top is an integer and the third a character. But a field
can also be a composite object, in which case it is called asubobject.

• A referenceis either void or uniquely identifies an object, to which it is said to be
attached. In the preceding figure the second field from the top is a reference —
attached in this case, as represented by the arrow, to the enclosing object itself. The
bottom field is a void reference.

235

'C'

Composite
object

(with 4 fields
including self-
reference and void
reference)

AN EIFFEL TUTORIAL §618
Features

A feature, as noted, is an operation available on instances of a class. A feature can be
either anattribute or a routine. This classification, which you can follow by starting
from theright on the figure above, is based on implementation considerations:

• An attribute is a feature implemented through memory: it describes a field that will
be found in all instances of the class. For example classACCOUNT may have an
attributebalance; then all instances of the class will have a corresponding field
containing each account’s current balance.

• A routine describes a computation applicable to all instances of the class.
ACCOUNT may have a routinewithdraw.

• Routines are further classified intofunctions, which will return a result, and
procedures, which will not. Routinewithdraw will be a procedure; an example of
function may behighest_deposit, which returns the highest deposit made so far
to the account.

If we instead take the viewpoint of theclients of a class (the classes relying on its
feature), you can see the relevant classification by starting from theleft on the figure:

• Commandshave no result, and may modify an object. They may only be procedures.

• Queries have a result: they return information about an object. You may
implement a query as either an attribute (by reserving space for the corresponding
information in each instance of the class, a memory-based solution) or a function
(a computation-based solution). An attribute is only possible for a query without

Feature

Command

Query

Feature

Routine

Attribute

Function

Procedure

Returns

No
result

result

No
result

Compu-

Memory

Compu-

Memory

Returns
result

tation

tation

Feature
categories

(Two
complemen-
tary classi-
fications)

§6 THE DYNAMIC STRUCTURE: EXECUTION MODEL 19
argument, such asbalance; a query with arguments, such asbalance_on (d),
returning the balance at dated, can only be a function.

From the outside, there is no difference between a query implemented as an attribute
and one implemented as a function: to obtain the balance of an accounta, you will
always writea.balance. In the implementation suggested above,a is an attribute, so
that the notation denotes an access to the corresponding object field. But it is also
possible to implementa as a function, whose algorithm will explore the lists of deposits
and withdrawals and compute their accumulated value. To the clients of the class, and
in the official class documentation as produced by the environment tools, the difference
is not visible.

This principle ofUniform Access is central to Eiffel’s goals of extendibility,
reusability and maintainability: you can change the implementation without affecting
clients; and you can reuse a class without having to know the details of its features’
implementations. Most object-oriented languages force clients to use a different
notation for a function call and an attribute access. This violates Uniform Access and
is an impediment to software evolution, turning internal representation changes into
interface changes that may disrupt large parts of a system.

A simple class

The following simple class text illustrates the preceding concepts

indexing
description: "Simple bank accounts"

class
ACCOUNT

feature -- Access
balance: INTEGER

-- Current balance
deposit_count: INTEGER is

-- Number of deposits made since opening
do

if all_deposits /= Void then
Result := all_deposits.count

end
end

AN EIFFEL TUTORIAL §620
(The{NONE} qualifier and theinvariant clause, used here to make the example closer
to a real class, will be explained shortly.DEPOSIT_LIST refers to another class,
which can be written separately using library classes.)

It’s easy to deduce, from a feature’s syntactic appearance, the category to which it
belongs. Here:

• Only deposit anddeposit_count, which include ado … clause, are routines.

• balance andall_deposits, which are simply declared with a type, are attributes.
Note that even for attributes it is recommended to have a header comment.

• Routinedeposit_count is declared as returning a result (of typeINTEGER); so
it is a function. Routinedeposit has no such result and hence is a procedure.

Creating and initializing objects

Classes, as noted, are a static notion. Objects appear at run time; they are created
explicitly. Here is the basic instruction to create an object of typeACCOUNT and
attach it tox:

feature -- Element change
deposit (sum: INTEGER) is

-- Add sum to account.
do

if all_deposits= Void then
create all_deposits

end
all_deposits.extend (sum)
balance := balance + sum

end

feature {NONE} -- Implementation
all_deposits: DEPOSIT_LIST

-- List of deposits since account’s opening.
invariant

consistent_balance:
(all_deposits /= Void) implies (balance = all_deposits.total)
zero_if_no_deposits:

(all_deposits = Void) implies (balance = 0)
end -- class ACCOUNT

create x

§6 THE DYNAMIC STRUCTURE: EXECUTION MODEL 21
assuming thatx has been declared of typeACCOUNT. Such an instruction must be in
a routine of some class — the only place where instructions can appear — and its effect
at run time will be threefold: create a new object of typeACCOUNT; initialize its fields
to default values; and attach the value ofx to it. Here the object will have two fields
corresponding to the two attributes of the generating class: an integer forbalance,
which will be initialized to 0, and a reference forall_deposits, which will be initialized
to a void reference:

The language specifies default initialization values for all possible types:

It is possible to override the initialization values by providing — as in the earlier
example of classHELLO — one or more creation procedures. For example we might
changeACCOUNT to make sure that every account is created with an initial deposit:

Type Default value

INTEGER, REAL, DOUBLE Zero

BOOLEAN False

CHARACTER Null

Reference types (such asACCOUNT
andDEPOSIT_LIST)

Void reference

Composite expanded types (see next) Same rules, applied recursively to all fields

0balance

all_deposits

(ACCOUNT)

Instance with
fields
initialized to
defaults

AN EIFFEL TUTORIAL §622
A create clause may list zero or more (here just one) procedures of the class.

Note the use of the same keyword,create , for both a creation clause, as here, and
creation instructions such ascreat x.

In this case the original form of creation instruction,create x, is not valid any more
for creating an instance ofACCOUNT1; you must use the form

known as a creation call. Such a creation call will have the same effect as the original
form — creation, initialization, attachment tox — followed by the effect of calling the
selected creation procedure, which here will calldeposit with the given argument.

Note that in this example all thatmake does is to calldeposit. So an alternative
to introducing a new proceduremake would have been simply to introduce a creation
clause of the formcreate deposit, elevating deposit to the status of creation
procedure. Then a creation call would be of the formcreate x.deposit (2000).

Some variants of the basic creation instruction will be reviewed later: instruction with
an explicit type; creation expressions. See“Creation variants”, page 89.

Entities
The example assumedx declared of typeACCOUNT (or ACCOUNT1). Such anx is
an example ofentity, a notion generalizing the well-known concept of variable. An
entity is a name that appears in a class text to represent possible run-time values (a value
being, as defined earlier, an object or a reference). An entity is one of the following:

• An attribute of the enclosing class, such asbalance andall_deposits.

• A formal argument of a routine, such assum for deposit andmake.

indexing
description: "Simple bank accounts, initialized with a first deposit"

class
ACCOUNT1

create
make

feature -- Initialization
make (sum: INTEGER) is

-- Initialize account with sum.
do

deposit (sum)
end

… The rest of the class as for ACCOUNT …
end -- class ACCOUNT1

create x.make (2000)

§6 THE DYNAMIC STRUCTURE: EXECUTION MODEL 23
• A local entity declared for the internal needs of a routine.

• The special entityResult in a function.

The third case, local entities, arises when a routine needs some auxiliary values for
its computation. Here is an example of the syntax:

This example is a variant ofdeposit for which we assume that the elements of a
DEPOSIT_LIST such asall_deposits are no longer just integers, but objects,
instances of a new class,AMOUNT. Such an object will contain an integer value, but
possibly other information as well. So for the purpose of proceduredeposit we create
an instance ofAMOUNT and insert it, using procedureextend, into the list
all_deposits. The object is identified through the local entitynew, which is only
needed within each execution of the routine (as opposed to an attribute, which yields
an object field that will remain in existence for as long as the object).

The last case of entity,Result, serves to denote, within the body of a function, the
final result to be returned by that function. This was illustrated by the function
deposits_count, which read

The value returned by any call will be the value of the expressionall_deposits.count
(to be explained in detail shortly) for that call, unlessall_deposits has valueVoid,
denoting a void reference (/= is “not equal”).

The default initialization rules seen earlier for attributes (see the table on page21)
also serve to initialize local entities andResult on routine entry. So in the last example,
if all_deposits is void (as in the case on initialization with the class as given so far),
Result keeps its default value of 0, which will be returned as the result of the function.

deposit (sum: INTEGER) is
-- Add sum to account.

local
new: AMOUNT

do
create new.make (sum)
all_deposits.extend (new)
balance := balance + sum

end

deposit_count: INTEGER is
-- Number of deposits made since opening (provisional version)
if all_deposits /= Void then

Result := all_deposits.count
end

AN EIFFEL TUTORIAL §624
Calls

Apart from object creation, the basic computational mechanism, in the object-oriented
style of computation represented by Eiffel, is feature call. In its basic form, it appears as

wheretarget is an entity or more generally an expression,feature is a feature name,
and there may be zero or moreargument expressions. In the absence of anyargument
the part in parentheses should be removed.

We have already seen such calls. If thefeature denotes a procedure, the call is an
instruction, as in

If feature denotes a query (function or attribute), the call is an expression, as in the
right-hand side of

Following the principle of Uniform Access (page19), this form is the same for calls to
attributes and to functions without arguments. In this example, featurecount from class
DEPOSIT_LIST may indeed be implemented in either of these two ways: we can keep
acount field in each list, updating it for each insertion and removal; or we can compute
count, whenever requested, by traversing the list and counting the number of items.

In the case of a routine with arguments — procedure or function — the routine will
be declared, in its class, as

meaning that, at the time of each call, the value of each formal will be set to the
corresponding actual (formal1 to argument1 and so on).

In the routine body, it is not permitted to change the value of a formal argument,
although it is possible to change the value of an attached object through a procedure
call such asformal1.some_ procedure (…).

target.feature (argument1, …)

all_deposits.extend (new)

Result := all_deposits.count

feature (formal1: TYPE1; …) is
do … end

§6 THE DYNAMIC STRUCTURE: EXECUTION MODEL 25
Infix and prefix notation

Basic types such asINTEGER are, as noted, full-status citizens of Eiffel’s type system,
and so are declared as classes (part of the Kernel Library).INTEGER, for example, is
characterized by the features describing integer operations: plus, minus, times,
division, less than, and so on.

With the dot notation seen so far, this would imply that simple arithmetic
operations would have to be written with a syntax such asi.plus (j) instead of the usual
i + j. This would be awkward. Infix and prefix features solve the problem, reconciling
the object-oriented view of computation with common notational practices of
mathematics. The addition function is declared in classINTEGER as

Such a feature has all the properties and prerogatives of a normal “identifier” feature,
except for the form of the calls, which is infix, as ini + j, rather than using dot notation.
An infix feature must be a function, and take exactly one argument. Similarly, a
function can be declared asprefix "–", with no argument, permitting calls of the form
–3 rather than(3).negated.

Predefined library classes covering basic types such asINTEGER,
CHARACTER, BOOLEAN, REAL, DOUBLE are known to the Eiffel compiler, so
that a call of the formi + j, although conceptually equivalent to a routine call, can be
processed just as efficiently as the corresponding arithmetic expression in an ordinary
programming language. This brings the best of both worlds: conceptual simplicity,
enabling Eiffel developers, when they want to, to think of integers and the like as
objects; and efficiency as good as in lower-level approaches.

Infix and prefix features are available to any class, not just the basic types’
predefined classes. For example a graphics class could use the nameinfix "|–|" for a
function computing the distance between two points, to be used in expressions such as
point1 |–| point2.

infix "+" (other: INTEGER): INTEGER is
do … end

AN EIFFEL TUTORIAL §626
Type declaration

Every entity appearing in an Eiffel text is declared as being of a certain type, using the
syntax already encountered in the above examples:

This applies to attributes, formal arguments of routines and local entities. You will also
declare the result type for a function, as in the earlier example

Specifying such a function result type also declares, implicitly, the type forResult as
used in the function’s body.

What is a type? With the elements seen so far, every type is aclass . INTEGER,
used in the declaration ofdeposits_count, is, as we have seen, a library class; and the
declaration all_deposits: DEPOSIT_LIST assumes the existence of a class
DEPOSIT_LIST.

Three mechanisms introduced below — expanded types (page26), genericity
(page36) and anchored declarations (page79)— will generalize the notion of type
slightly. But they do not change the fundamental property thatevery type is based on
a class, called the type’sbase class. In the examples seen so far, each typeis a class,
serving as its own base class.

An instance of a classC is also called “an object of typeC ”.

Type categories

It was noted above that a value is either an object or a reference. This corresponds to
two kinds of type: reference types and expanded types.

If a class is declared as just

it defines a reference type. The entities declared of that type will denote references. So
in the declaration

the possible run-time values forx are references, which will be either void or attached
to instances of classACCOUNT.

entity_name: TYPE_NAME

deposit_count: INTEGER is …

class CLASS_NAME …

x: ACCOUNT

§6 THE DYNAMIC STRUCTURE: EXECUTION MODEL 27
Instead ofclass , however, you may use the double keywordexpanded class ,
as in the EiffelBase class definition

In this case the value of an entity declared asn: INTEGER is not a reference to an
object, but the object itself — in this case an atomic object, an integer value.

It is also possible, for some non-expanded class C, to declare an entity as

so that the values forx will be objects of typeC, rather than references to such objects.
This is our first example of a type —expanded C — that is not directly a class,
although it is based on a class,C. The base type of such a type isC.

Note that the value of an entity of an expanded type can never be void; only a
reference can. Extending the earlier terminology, an expanded entity is always
attached to an object, atomic (as in the case ofn: INTEGER) or composite (as in
x: expanded ACCOUNT).

Expanded declarations make it possible to construct composite objects with
subobjects, as in the following abbreviated class declaration (indexing clause and
routines omitted):

Here is an illustration of the structure of a typical instance ofCAR:

indexing
description: "Integer values"

expanded class
INTEGER

feature -- Basic operations
infix "+" (other: INTEGER): INTEGER is

do … end
… Other feature declarations …

end -- class INTEGER

x: expanded C

class CAR feature
engine: expanded ENGINE
originating_plant: PLANT

end -- class CAR

AN EIFFEL TUTORIAL §628
This example also illustrates that the distinction between expanded and reference types
is important not just for system implementation purposes but for high-level system
modeling as well. Consider the example of a class covering the notion of car. Many cars
share the sameoriginating_plant, but anengine belongs to just one car. References
represent the modeling relation “knows about”; subobjects, as permitted by expanded
types, represent the relation “has part”, also known as aggregation. The key difference
is that sharing is possible in the former case but not in the latter.

Basic operations
To assign, copy and compare values, you can rely on a number of mechanisms. Two of
them, assignment and equality testing, are language constructs; the others are library
features, coming from the top-level classANY seen earlier (page15).

Assignment uses the symbol:=. The assignment instruction

updates the value ofx to be the same as that ofy. This means that:

• For entities of reference types, the value ofx will be a void reference if the value
of y is void, and otherwisex will be attached to the same object OBJ2 asy:

x := y

(CAR)

(ENGINE)

originating_plant

engine (PLANT)

Composite
object with
reference and
subobject

✄

x
Before

After

OBJ1

OBJ2

y

Effect of
reference
reattachment
x := y

§6 THE DYNAMIC STRUCTURE: EXECUTION MODEL 29
• For entities of expanded types, the values are objects; the object attached tox will
be overwritten with the contents of the object attached toy. In the case of atomic
objects, as inn := 3 with the declarationn: INTEGER, this has the expected effect
of assigning ton the integer value3; in the case of composite objects, this
overwrites the fields forx, one by one, with the correspondingy fields.

To copy an object, usex.copy (y) which assumes that bothx andy are non-void, and
copies the contents ofy’s attached object onto those ofx’s. For expanded entities the
effect is the same as that the of the assignmentx := y.

A variant of thecopy operation isclone. The expressionclone (y) produces a
newly created object, initialized with a copy of the object attached toy, or a void value
if y itself is void. For a reference type (the only interesting case) the returned result for
non-void y is a reference to the new object. This means we may viewclone as a
function that performs

So in the assignmentx := clone (y), assuming both entities of reference types andy not
void, will attachx to a new object identical toy’s attached object, as opposed to the
assignmentx := y which attachesx to thesame object asy.

To determine whether two values are equal, use the expressionx = y. For
references, this comparison will yield true if the values are either both void or both
attached to the same object; this is the case in the last figure in the state after the
assignment, but not before. The symbol fornot equal is/=, as inx /= y.

As with assignment, there is also a form that works on objects rather than
references:x.is_equal (y) will return true whenx andy are both non-void and attached
to field-by-field identical objects. This can be true even whenx = y is not, for example,
in the figure,before the assignment, if the two objects shown are field-by-field equal.

A more general variant ofis_equal is used under the formequal (x, y). This is
always defined, even ifx is void, returning true wheneveris_equal would but also ifx
andy are both void. (In contrast,x.is_equal (y) is not defined for voidx and would, if
evaluated, yield an exception as explained in“Exception handling”, page 46 below.)

Void denotes a void reference. So you can makex void through the assignment
x := Void, and test whether it is void throughif x = Void then …

Where assignment:= and the equality operators= and /= were language
constructres,copy, clone, is_equal, equal and Void are library features coming
from classANY. The type ofVoid, as declared inANY, is NONE, the “bottom” type.

create Result
Result.copy (y)

AN EIFFEL TUTORIAL §630
Using the redefinition mechanisms to be seen in the discussion of inheritance, a
class can redefinecopy and is_equal to cover specific notions of copy and equality.
The assertions will ensure that the two remain compatible: afterx.copy (y), the
propertyx.is_equal (y) must always be true. The effect ofclone will automatically
follow a redefinition ofcopy, andequal will follow is_equal.

To guarantee the original, non-redefined semantics you may use the variants
standard_copy, standard_clone, standard_equal, all defined inANY as “frozen”,
that is to say non-redefinable.

Deep operations and persistence

Featureclone only duplicates one object. If some of the object’s fields are references
to other objects, the references themselves will be copied, not those other objects.

It is useful, in some cases, to duplicate not just one object but an entire object
structure. The expressiondeep_clone (y) achieves this goal: assuming non-voidy, it
will produce a duplicate not just of the object attached toy but of the entire object
structure starting at that object. The mechanism respects all the possible details of that
structure, such as cyclic reference chains. Like the preceding features,deep_clone
comes from classANY.

A related mechanism provides a powerfulpersistence facility. A call of the form

will store a copy of the entire object structure starting atx, under a suitable
representation. Likedeep_clone, procedurestore will follow all references to the end
and maintain the properties of the structure. The functionretrieved can then be used
— in the same system, or another — to recreate the structure from the stored version.

As the name suggests,Some_file_or_network_connection can be an external
medium of various possible kinds, not just a file but possibly a database or network.
ISE’s EiffelNet client-server library indeed uses thestore-retrieved mechanism to
exchange object structures over a network, between compatible or different machine
architectures, for example a Windows client and a Unix server.

Memory management

Reference reattachmentsx := y of the form illustrated by the figure on page28 can
cause objects to become unreachable. This is the case for the object identified as OBJ2
on that figure (the object to whichx was attached before the assignment) if no other
reference was attached to it.

x.store (Some_file_or_network_connection)

§6 THE DYNAMIC STRUCTURE: EXECUTION MODEL 31
In all but toy systems, it is essential to reclaim the memory that has been allocated
for such objects; otherwise memory usage could grow forever, as a result of creation
instructionscreate x … and calls toclone and the like, leading to thrashing and
eventually to catastrophic termination.

Tthe Eiffel method suggests that the task of detecting and reclaiming such unused
object space should be handled by an automatic mechanism (part of the Eiffel run-time
environment), not manually by developers (through calls to procedures such as Pascal’s
dispose and C/C++’sfree). The arguments for this view are:

• Simplicity : handling memory reclamation manually can add enormous
complication to the software, especially when — as is often the case in object-
oriented development — the system manipulates complex run-time data structures
with many links and cycles.

• Reliability : memory management errors, such as the incorrect reclamation of an
object that is still referenced by a distant part of the structure, are a notorious
source of dangerous and hard-to-correct bugs.

ISE Eiffel provides a sophisticatedgarbage collectorwhich efficiently handles the
automatic reclamation process, while causing no visible degradation of a system’s
performance and response time.

Information hiding and the call rule

The basic form of computation, it has been noted, is a call of the form
target.feature (…). This is only meaningful iffeature denotes a feature of the
generating class of the object to whichtarget (assumed to be non-void) is attached. The
precise rule is the following:

The first condition simply expresses that iftarget has been declared astarget: A then
feature must be the name of one of the features ofA. The second condition reflects
Eiffel’s application of the principles of information hiding. Afeature clause,
introducing one or more feature declarations, may appear not only as

Feature Call rule
A call of the formtarget.feature (…) appearing in a classC is only valid if
feature is a feature of the base class oftarget’s type, and is available toC.

feature -- Comment identifying the feature category
… Feature declaration …
… Feature declaration …
…

AN EIFFEL TUTORIAL §632
but may also include a list of classes in braces,feature {A, B, …}, as was illustrated
for ACCOUNT:

This form indicates that the features appearing in that clause are onlyavailable—
in the sense of available for calls, as used in the Feature Call rule — to the classes listed.
In the example featureall_deposits is only available toNONE. Because of the global
inheritance structure (page15) this means it is in fact available to no useful client at all,
and is equivalent in practice tofeature { } with an empty class list, although the form
listing NONE explicitly is more visible and hence preferred.

With this specification a class text including the declarationacc: ACCOUNT and
a call of the form

violates the Feature Call rule and will be rejected by the EiffelStudio compiler.

Besides fully exported features (introduced byfeature … without further
qualification) and fully secret ones (feature { } or feature {NONE}), it is possible to
export features selectively to some specified classes, using the specification

for arbitrary classesA, B, … This enables a group of related classes to provide each
other with privileged access, without requiring the introduction of a special module
category above the class level (see“Clusters”, page 15).

Exporting features selectively to a set of classesA, B, … also makes them
available to the descendants of these classes. So a feature clause beginning with just
feature is equivalent to one starting withfeature {ANY}.

These rules enable successive feature clauses to specify exports to different
clients. In addition, the recommended style, illustrated in the examples of this chapter,
suggests writing separate feature clauses — regardless of their use for specifying export
privileges — to group features into separate categories. The standard style rules define
a number of fundamental categories and the order in which they should appear; they
include: Initialization for creation procedures,Access for general queries,Status
report for boolean-valued queries,Status setting, Element change,
Implementation (for selectively exported or secret features. Every feature in the
EiffelBase library classes belongs to one of the predefined categories.

feature {NONE} -- Implementation
all_deposits: DEPOSIT_LIST

-- List of deposits since account’s opening.

acc.all_deposits

feature {A, B, …}

§6 THE DYNAMIC STRUCTURE: EXECUTION MODEL 33
The Feature Call rule is the first of the rules that make Eiffel astatically typed
approach, where the applicability of operations to objects is verified at compile time
rather than during execution. Static typing is one of the principal components of Eiffel’s
support for reliability in software development.

Execution scenario

The preceding elements make it possible to understand the overall scheme of an Eiffel
system’s execution.

At any time during the execution of a system, one object is thecurrent object of
the execution, and one of the routines of the system, thecurrent routine , is being
executed, with the current object as its target. (We will see below how the current object
and current routine are determined.) The text of a class, in particular its routines, make
constant implicit references to the current object. For example in the instruction

appearing in the body of proceduredeposit of classACCOUNT, the name of the
attributebalance, in both occurrences, denotes thebalance field of the current object,
assumed to be an instance ofACCOUNT. In the same way, the procedure body that we
used for the creation proceduremake in theACCOUNT1 variant

contains a call to the proceduredeposit. Contrary to earlier calls written in dot notation
astarget.feature (…), the call todeposit has no explicit target; this means its target
is the current object, an instance ofACCOUNT1. Such a call is said to beunqualified;
those using dot notations arequalified calls.

Although most uses of the current object are implicit, a class may need to name it
explicitly. The predefined expressionCurrent is available for that purpose. A typical use,
in a routinemerge (other: ACCOUNT) of classACCOUNT, would be a test of the form

balance := balance + sum

make (sum: INTEGER) is
-- Initialize account with sum.

do
deposit (sum)

end

if other = Current then
report_error ("Error: trying to merge an account with itself !")

else
… Normal processing (merging two different accounts) …

end

AN EIFFEL TUTORIAL §634
With these notions it is not hard to define precisely the overall scenario of a system
execution by defining which object and routine will, at each instant, be the current
object and the current routine:

• Starting a system execution, as we have seen, consists in creating an instance of
the root class, the root object, and executing a designated creation procedure, the
root procedure, with the root object as its target. The root object is the initial
current object, and the root procedure is the initial current procedure.

• From then on only two events can change the current object and current procedure:
a qualified routine call; and the termination of a routine.

• In a call of the formtarget.routine (…), target denotes a certain object TC. (If
not, that is to say, if the value of target is void, attempting to execute the call will
trigger an exception, as studied below.) The generating class of TC must, as per
the Feature Call rule, contain a routine of nameroutine. As the call starts, TC
becomes the new current object androutine becomes the new current routine.

• When a routine execution terminates, the target object and routine of the most
recent non-terminated call — which, just before just before the terminated call,
were the current object and the current routine — assume again the role of current
object and current routine.

• The only exception to the last rule is termination of the original root procedure
call; in this case the entire execution terminates.

Abstraction

The description of assignments stated that inx := y the targetx must be an entity. More
precisely it must be awritable entity. This notion excludes formal routine arguments:
as noted, a routiner (arg: SOME_TYPE) may assign toarg (reattaching it to a
different object), although it can change the attached objects through calls of the form
arg.procedure (…).

Restricting assignment targets to entities precludes assignments of the form
obj.some_attribute := some_value, since the left-hand sideobj.some_attribute is an
expression (a feature call), not an entity: you may no more assign toobj.some_attribute
than to, say,a + b — another expression that is also, formally, a feature call.

§6 THE DYNAMIC STRUCTURE: EXECUTION MODEL 35
To obtain the intended effect of such an assignment you may use a procedure call
of the formobj.set_attribute (some_value), where the base class ofobj’s type has
defined the procedure

This rule is essential to enforcing the method. Permitting direct assignments to an
object’s fields — as in C++ and Java — would violate all the tenets of information
hiding by letting clients circumvent the interface carefully crafted by the author of a
supplier class. It is the responsibility of each class author to define the exact privileges
that the class gives to each of its clients, in particular field modification rights. Building
a class is like building a machine: you design the internals, to give yourself the
appropriate mechanisms; and you design the control panel, letting users (clients) access
the desired subset of these mechanisms, safely and conveniently.

The levels of privilege available to the class author include, for any field:

• Hidethefieldcompletelyfromclients,byexportingthecorrespondingattributetoNONE.

• Export it, but in read-only mode, by not exporting any procedure that modifies it.

• Export it for free read and write by any client, by also exporting a procedure of the
set_attribute kind.

• Export it in restricted-write mode, by exporting a procedure such asdeposit of
classACCOUNT, which adds a specified amount to thebalance field, rather than
directly setting the balance.

The last case is particularly interesting is that it allows the class designer to set the
precise way in which clients will manipulate the class instances, respecting the
properties of the class and its integrity. The exported routines may, through the Design
by Contract mechanism reviewed later (8), place some further restrictions on the
permitted modifications, for example by requiring the withdrawn amount to be positive.

These rules follow directly from the more general goals (reusability, extendibility,
reliability) and principles (Uniform Access, information hiding) underlying Eiffel software
design. They reflect a view that each class must denote a well-understood abstraction,
defined by a set of exported features chosen by the class designer — the “control panel”.

The class documentation (thecontract form, see page44) makes this view clear to
client authors; no violation of that interface is permitted. This approach also paves the
way for futuregeneralization— the final step of the cluster lifecycle, seen earlier on
page9— of the most promising components, and their inclusion into reusable libraries.

set_attribute (v: VALUE_TYPE) is
-- Set value of attribute to v.

do
attribute := v

end

AN EIFFEL TUTORIAL §736
7 GENERICITY AND ARRAYS

Some of the classes that we will need, particularly in libraries, arecontainer classes,
describing data structures made of a number of objects of the same or similar types.
Examples of containers include arrays, stacks and lists. The classDEPOSIT_LIST
posited in earlier examples describes containers.

It is not hard, with the mechanisms seen so far, to write the classDEPOSIT_LIST,
which would include such features ascount (query returning the number of deposit
objects in the list) andput (command to insert a new deposit object).

Most of the operations, however, would be the same for lists of objects other than
deposits. To avoid undue replication of efforts and promote reuse, we need a way to
describegenericcontainer classes, which we can use to describe containers containing
elements of many different types.

Making a class generic

The notation

introduces a generic class. A name such asG appearing in brackets after the class name
is known as aformal generic parameter; it represents an arbitrary type.

Within the class text, feature declarations can freely useG even though it is not
known what typeG stands for. ClassLIST of EiffelBase, for example, includes features

The operations available on an entity such asfirst and val, whose type is a formal
generic parameter, are the operations available on all types: use as sourcey of an
assignmentx := y, use as targetx of such an assignment (although not forval, which as
a formal routine argument is not writable), use in equality comparisonsx = y or x /= y,
and application of universal features fromANY such asclone, equal andcopy.

To use a generic class such as list, a client will provide a type name asactual
generic parameter. So instead of relying on a special purpose classDEPOSIT_LIST,
the classACCOUNT could include the declaration

class C [G] … The rest as for any other class declaration …

first: G
-- Value of first list item

extend (val: G) is
-- Add a new item of value val at end of list
…

§7 GENERICITY AND ARRAYS 37
usingLIST as a generic class andDEPOSIT as the actual generic parameter. Then all
features declared inLIST as working on values of typeG will work, when called on the
targetall_deposits, on values of typeDEPOSIT. With the target

these features would work on values of typeACCOUNT.

A note of terminology: to avoid confusion, Eiffel always uses the wordargument for
routine arguments, reservingparameter for the generic parameters of classes.

Genericity reconciles extendibility and reusability with the static type checking
demanded by reliability. A typical error, such as confusing an account and a deposit,
will be detected immediately at compile time, since the call
all_accounts.extend (dep) is invalid for dep declared of typeDEPOSIT. What is
valid is something likeall_accounts.extend (acc) for acc of type ACCOUNT. In
other approaches, the same effect might require costly run-time checks (as in Java, C#
or Smalltalk), with the risk of run-time errors.

This form of genericity is known asunconstrained because the formal generic
parameter,G in the example, represents an arbitrary type. You may also want to use
types that are guaranteed to have certai operations available. This is known as
constrained genericity and will be studied with inheritance.

Arrays

An example of generic class from the Kernel Library isARRAY [G], which describes
direct-access arrays. Features include:

• put to replace an element’s value, as inmy_array.put (val, 25) which replaces by
val the value of the array entry at index 25.

• item to access an entry, as inmy_array.item (25) yielding the entry at index 25.
A synonym isinfix "@", so that you may also write more tersely, for the same
result,my_array @ 25.

• lower, upper andcount: queries yielding the bounds and the number of entries.

• The creation proceduremake, as in create my_array.make (1, 50) which
creates an array with the given index bounds. It is also possible to resize an array
throughresize, retaining the old elements. In general, the Eiffel method abhors
built-in limits, favoring instead structures that resize themselves when needed, either
from explicit client request or automatically.

The comment made aboutINTEGER and other basic classes applies toARRAY too:
Eiffel compilers know about this class, and will be able to process expressions of the
form my_array.put (val, 25) andmy_array @ 25 in essentially the same way as a C

all_deposits: LIST [DEPOSIT]

all_accounts: LIST [ACCOUNT]

AN EIFFEL TUTORIAL §838
or Fortran array access —my_array [25] in C. But it is consistent and practical to let
developers treatARRAY as a class and arrays as objects; many library classes in
EiffelBase, for example, inherit fromARRAY. Once again the idea is to get the best of
both worlds: the convenience and uniformity of the object-oriented way of thinking;
and the efficiency of traditional approaches.

A similar technique applies to another Kernel Library class, that one not generic:
STRING, describing character strings with a rich set of string manipulation features.

Generic derivation

The introduction of genericity brings up a small difference between classes and types.
A generic classC is not directly a type since you cannot declare an entity as being of
typeC: you must use some actual generic parameterT — itself a type.C [T] is indeed
a type, but classC by itself is only a type template.

The process of obtaining a typeC [T] from a general classC is known as ageneric
derivation; C [T] is agenerically derived type. TypeT itself is, recursively, either a
non-generic class or again a generically derived typeD [U] for someD andU, as in
LIST [ARRAY [INTEGER]].)

It remains true, however, that every type is based on a class. The base class of a
generically derived typeC [T] is C.

8 DESIGN BY CONTRACT TM, ASSERTIONS, EXCEPTIONS

Eiffel directly implements the ideas of Design by ContractTM, which enhance software
reliability and provide a sound basis for software specification, documentation and
testing, as well as exception handling and the proper use of inheritance.

Design by Contract basics

A system — a software system in particular, but the ideas are more general — is made
of a number of cooperating components. Design by Contract states that their
cooperation should be based on precise specifications —contracts— describing each
party’s expectations and guarantees.

An Eiffel contract is similar to a real-life contract between two people or two
companies, which it is convenient to express in the form of tables listing the
expectations and guarantees. Here for example is how we could sketch the contract
between a homeowner and the telephone company:

§8 DESIGN BY CONTRACTTM, ASSERTIONS, EXCEPTIONS 39
Note how the obligation for each of the parties maps onto a benefit for the other. This
will be a general pattern.

The client’s obligation, which protects the supplier, is called aprecondition. It
states what the client must satisfy before requesting a certain service. The client’s
benefit, which describes what the supplier must do (assuming the precondition was
satisfied), is called apostcondition.

In addition to preconditions and postconditions, contract clauses includeclass
invariants, which apply to a class as a whole. More precisely a class invariant must be
ensured by every creation procedure (or by the default initialization if there is no
creation procedure), and maintained by every exported routine of the class.

Expressing assertions

Eiffel provides syntax for expressing preconditions (require), postconditions
(ensure) and class invariants (invariant), as well as other assertion constructs studied
later (see“Instructions”, page 84): loop invariants and variants, check instructions.

Here is a partial update of classACCOUNT with more assertions:

provide_service OBLIGATIONS BENEFITS

Client (Satisfy precondition:)

Pay bill

(From postcondition:)

Get telephone service

Supplier (Satisfy postcondition:)

Provide telephone
service

(From precondition:)

No need to provide
anything if bill not paid

indexing
description: "Simple bank accounts"

class
ACCOUNT

feature -- Access
balance: INTEGER

-- Current balance
deposit_count: INTEGER is

-- Number of deposits made since opening
do

… As before …
end

AN EIFFEL TUTORIAL §840
Each assertion is made of one or more subclauses, each of them a boolean expression
(with the additional possibility of theold construct). The effect of including more than
one subclause, as in the postcondition ofdeposit and in the invariant, is the same as
connecting them through anand . Each clause may be preceded by a label, such as
consistent_balance in the invariant, and a colon; the label is optional and does not
affect the assertion’s semantics, except for error reporting as explained in the next
section, but including it systematically is part of the recommended style. The value of
the boolean expressiona implies b is true except ifa is true andb false.

Because assertions benefit from the full power of boolean expressions, they may
include function calls. This makes it possible to express sophisticated consistency
conditions, such as “the graph contains no cycle”, which would not be otherwise
expressible through simple expressions, or even through first-order predicate calculus,
but which are easy to implement as Eiffel functions returning boolean results.

The precondition of a routine expresses conditions that the routine is imposing on
its clients. Here a call todeposit is correct if and only if the value of the argument is
non-negative. The routine does not guarantee anything for a call that does not satisfy
the precondition. It is in fact part of the Eiffel method that a routine body shouldnever

feature -- Element change
deposit (sum: INTEGER) is

-- Add sum to account.
require

non_negative: sum >= 0
do

… As before …
ensure

one_more_deposit:
deposit_count = old deposit_count + 1

updated: balance = old balance + sum
end

feature {NONE} -- Implementation
all_deposits: DEPOSIT_LIST

-- List of deposits since account’s opening.

invariant
consistent_balance: (all_deposits /= Void) implies

(balance = all_deposits.total)
zero_if_no_deposits: (all_deposits = Void) implies

(balance = 0)
end -- class ACCOUNT

§8 DESIGN BY CONTRACTTM, ASSERTIONS, EXCEPTIONS 41
test for the precondition, since it is the client’s responsibility to ensure it. (An apparent
paradox of Design by Contract, which is reflected in the bottom-right entries of the
preceding and follwing contract tables, and should not be a paradox any more at the end
of this discussion, is that one can getmorereliable software by havingfewerexplicit
checks in the software text.)

The postcondition of a routine expresses what the routine guaranteed to its clients
for calls satisfying the precondition. The notationold expression, valid in
postconditions (ensure clauses) only, denotes the value thatexpression had on entry
to the routine.

The precondition and postcondition state the terms of the contract between the
routine and its clients, similar to the earlier example of a human contract:

The class invariant, as noted, applies to all features. It must be satisfied on exit by any
creation procedure, and is implicitly added to both the precondition and postcondition
of every exported routine. In this respect it is both good news and bad news for the
routine implementer: good news because it guarantees that the object will initially be
in a stable state, averting the need in the example to check that the total ofall_deposits
is compatible with thebalance; bad news because, in addition to its official contract as
expressed by its specific postcondition, every routine must take care of restoring the
invariant on exit.

A requirement on meaningful contracts is that they should be in good faith:
satisfiable by an honest partner. This implies a consistency rule: if a routine is exported
to a client (either generally or selectively), any feature appearing in its precondition
must also be available to that client. Otherwise — for example if the precondition
includedrequire n > 0, wheren is a secret attribute — the supplier would be making
demands that a good-faith client cannot possibly check for.

Note in this respect thatguaranteeinga precondition does not necessarily mean,
for the client,testingfor it. Assumingn is exported, a call may test for the precondition

deposit OBLIGATIONS BENEFITS

Client (Satisfy precondition:)

Use a non-negative argument.

(From postcondition:)

Get deposits list and balance
updated.

Supplier (Satisfy postcondition:)

Update deposits list and
balance.

(From precondition:)

No need to handle negative
arguments.

if x.n > 0 then x.r end

AN EIFFEL TUTORIAL §842
possibly with anelse part. But if the context of the call, in the client’s code, implies
that n is positive — perhaps because some preceding call set it to the sum of two
squares — then there is no need for anif or similar construct.

In such a case, acheck instruction as introduced later (“Instructions”, page84) is
recommended if the reason for omitting the test is non-trivial.

Using contracts for built-in reliability

What are contracts good for? Their first use is purely methodological. By applying a
discipline of expressing, as precisely as possible, the logical assumptions behind
software elements, you can write software whose reliability is built-in: software that is
developed hand-in-hand with the rationale for its correctness.

This simple observation — usually not clear to people until they have practiced
Design by Contract thoroughly on a large-scale project — brings as much change to
software practices and quality as the rest of object technology.

Run-time assertion monitoring

Contracts in Eiffel are not just wishful thinking. They can be monitored at run time
under the control of compilation options.

It should be clear from the preceding discussion that contracts are not a
mechanism to test for special conditions, for example erroneous user input. For that
purpose, the usual control structures (if deposit_sum >= 0 then …) are available,
complemented in applicable cases by the exception handling mechanism reviewed
next. An assertion is instead acorrectness condition governing the relationship
between two software modules (not a software module and a human, or a software
module and an external device). Ifsum is negative on entry todeposit, violating the
precondition, the culprit is some other software element, whose author was not careful
enough to observe the terms of the deal. Bluntly:

To be more precise:

• A precondition violation signals a bug in the client, which did not observe its part
of the deal.

• A postcondition (or invariant) violation signals a bug in the supplier — the routine
— which did not do its job.

Assertion Violation rule
A run-time assertion violation is the manifestation of a bug.

§8 DESIGN BY CONTRACTTM, ASSERTIONS, EXCEPTIONS 43
That violations indicate bugs explains why it is legitimate to enable or disable
assertion monitoring through mere compilation options: for a correct system — one
without bugs — assertions will always hold, so the compilation option makes no
difference to the semantics of the system.

But of course for an incorrect system the best way to find out where the bug is —
or just that there is a bug — is often to monitor the assertions during development and
testing. Hence the presence of the compilation options, which ISE’s EiffelStudio lets
you set separately for each class, with defaults at the system and cluster levels:

• no : assertions have no run-time effect.

• require : monitor preconditions only, on routine entry.

• ensure : preconditions on entry, postconditions on exit.

• invariant : like ensure , plus class invariant on both entry and exit for qualified calls.

• all : like invariant , plus check instructions, loop invariants and loop variants
(“Instructions”, page 84).

An assertion violation, if detected at run time under one of these options other than the
first, will cause an exception (“Exceptionhandling”, page46). Unless the software has
an explicit “retry” plan as explained in the discussion of exceptions, the violation will
cause produce an exception trace and cause termination (or, in EiffelStudio, a return to
the environment’s browsing and debugging facilities at the point of failure). If present,
the label of the violated subclause will be displayed, to help identify the problem.

The default isrequire . This is particularly interesting in connection with the
Eiffel method’s insistence on reuse: with libraries such as EiffelBase, richly equipped
with preconditions expressing terms of use, an error in theclient software will often
lead, for example through an incorrect argument, to violating one of these
preconditions. A somewhat paradoxical consequence is that even an application
developer who does not apply the method too well (out of carelessness, haste,
indifference or ignorance) will still benefit from the presence of contracts insomeone
else’s library code.

During development and testing, assertion monitoring should be turned on at the
highest possible level. Combined with static typing and the immediate feedback of
compilation techniques such as the Melting Ice Technology, this permits the
development process mentioned in the section“Quality andfunctionality”, page10,
where errors are exterminated at birth. No one who has not practiced the method in a
real project can imagine how many mistakes are found in this way; surprisingly often,
a violation will turn out to affect an assertion that was just included for goodness’ sake,
the developer being convinced that it could never “possibly” fail to be satisfied.

AN EIFFEL TUTORIAL §844
By providing a precise reference (the description of what the software is supposed
to do) against which to assess the reality (what the software actually does), Design by
Contract profoundly transforms the activities of debugging, testing and quality assurance.

When releasing the final version of a system, it is usually appropriate to turn off
assertion monitoring, or bring it down to therequire level. The exact policy depends
on the circumstances; it is a tradeoff between efficiency considerations, the potential
cost of mistakes, and how much the developers and quality assurance team trust the
product. When developing the software, however, you should always assume — to
avoid loosening your guard — that in the end monitoring will be turned off.

The contract form of a class

Another application of assertions governs documentation. Environment mechanisms,
such as clicking theContract Form icon in EifffelStudio, will produce, from a class
text, an abstracted version which only includes the information relevant for client
authors. Here is the contract form of classACCOUNT in the latest version given:

indexing
description: "Simple bank accounts"

class interface
ACCOUNT

feature -- Access
balance: INTEGER

-- Current balance
deposit_count: INTEGER

-- Number of deposits made since opening
feature -- Element change

deposit (sum: INTEGER)
-- Add sum to account.

require
non_negative: sum >= 0

ensure
one_more_deposit: deposit_count = old

deposit_count + 1
updated: balance = old balance + sum

invariant
consistent_balance: balance = all_deposits.total

end -- class interface ACCOUNT

§8 DESIGN BY CONTRACTTM, ASSERTIONS, EXCEPTIONS 45
The wordsclass interface are used instead of justclass to avoid any confusion with
actual Eiffel text, since this is documentation, not executable software. (It is in fact
possible to generate a compilable variant of the Contract Form in the form of a deferred
class, a notion defined later.)

Compared to the full text, the Contract Form of a class (also called its “short
form”) retains all its interface properties, relevant to client authors:

• Names and signatures (argument and result type information) for exported features.

• Header comments of these features, which carry informal descriptions of their
purpose. (Hence the importance, mentioned in section4, of always including such
comments and writing them carefully.)

• Preconditions and postconditions of these features (at least the subclauses
involving only exported features).

• Class invariant (same observation).

The following elements, however, are not in the Contract Form: any information about
non-exported features; all the routine bodies (do clauses, or theexternal andonce
variants seen in“External software”, page16 above and“Once routinesandshared
objects”, page82 below); assertion subclauses involving non-exported features; and
some keywords not useful in the documentation, such asis for a routine.

In accordance with the Uniform Access principle (page19), the Contract Form
does not distinguish between attributes and argument-less queries. In the above
example,balance could be one or the other, as it makes no difference to clients, except
possibly for performance.

The Contract Form is the fundamental tool for using supplier classes in the Eiffel
method. It enables client authors to reuse software elements without having to read
their source code. This is a crucial requirement in large-scale industrial developments.

The Contract Form satisfies two key requirements of good software documentation:

• It is truly abstract, free from the implementation details of what it describes and
concentrating instead on its functionality.

• Rather than being developed separately — an unrealistic requirement, hard to
impose on developers initially and becoming impossible in practice if we expect
the documentation to remain up to date as the software evolves — the
documentation is extracted from the software itself. It is not a separate product but
a different view of the same product. This prolongs theSingle Productprinciple
that lies at the basis of Eiffel’s seamless development model (section3).

AN EIFFEL TUTORIAL §846
The Contract Form is only one of the relevant views. EiffelStudio, for example,
generates graphical representations of system structures, to show classes and their
relations — client, inheritance — according to the conventions of BON (the Business
Object Notation). In accordance with the principles of seamlessness and reversibility,
EiffelStudio lets you both work on the text, producing the graphics on the fly, or work
on the graphics, updating the text on the fly; you can alternate as you wish between
these two modes. The resulting process is quite different from more traditional
approaches based on separate tools: an analysis and CASE workbench, often based on
UML, to deal with an initial “bubble-and-arrow” description; and a separate
programming environment, to deal with implementation aspects only. In Eiffel the
environment provides consistent, seamless support from beginning to end.

The Contract Form — or its variant the Flat-Contract Form, which takes account
of inheritance (“Flat and Flat-ContractForms”, page72) are the standard form of
library documentation, used extensively, for example, in the bookReusableSoftware
(see bibliography). Assertions play a central role in such documentation by expressing
the terms of the contract. As demonstrateda contrarioby the widely publicized $500-
million crash of the Ariane-5 rocket launcher in June of 1996, due to the incorrect reuse
of a software module from the Ariane-4 project,reuse without a contract
documentation is the path to disaster. Non-reuse would, in fact, be preferable.

Exception handling

Another application of Design by Contract governs the handling of unexpected cases.
The vagueness of many discussions of this topic follows from the lack of a precise
definition of terms such as “exception”. With Design by Contract we are in a position
to be specific:

• Any routine has a contract to achieve.

• Its body defines a strategy to achieve it — a sequence of operations, or some other
control structure involving operations. Some of these operations are calls to
routines, with their own contracts; but even an atomic operation, such as the
computation of an arithmetic operation, has an implicit contract, stating that the
result will be representable.

• Any one of these operations mayfail , that is to say be unable to meet its contract;
for example an arithmetic operation may produce an overflow (a non-
representable result).

• The failure of an operation is anexceptionfor the routine that needed the operation.

• As a result the routine may fail too — causing an exception in its own caller.

http://www.eiffel.com/doc/page.html#rs

§8 DESIGN BY CONTRACTTM, ASSERTIONS, EXCEPTIONS 47
Note the precise definitions of the two key concepts, failure and exception. Although
failure is the more basic one — since it is defined for atomic, non-routine operations —
the definitions are mutually recursive, since an exception may cause a failure of the
recipient routine, and a routine’s failure causes an exception in its own caller.

Why state that an exception “may” cause a failure? It is indeed possible to
“rescue” a routine from failure in the case of an exception, by equipping it with a clause
labeledrescue , as in:

This example includes the only two constructs needed for exception handling:rescue
andretry . A retry instruction is only permitted in a rescue clause; its effect is to start
again the execution of the routine, without repeating the initialization of local entities
(such asimpossible in the example, which was initialized toFalse on first entry).
Featuresfailed andlast_character are assumed to be attributes of the enclosing class.

This example is typical of the use of exceptions: as a last resort, for situations that
should not occur. The routine has a precondition,file.readable, which ascertains that
the file exists and is accessible for reading characters. So clients should check that
everything is fine before calling the routine. Although this check is almost always a
guarantee of success, a rare combination of circumstances could cause a change of file
status (because a user or some other system is manipulating the file) between the check
for readable and the call tolow_level_read_function. If we assume this latter
function will fail if the file is not readable, we must catch the exception.

read_next_character (f: FILE) is
-- Make next character available in last_character;
-- if impossible, set failed to True.

require
readable: file.readable

local
impossible: BOOLEAN

do
if impossible then

failed := True
else

last_character := low_level_read_function (f)
end

rescue
impossible := True
retry

end

AN EIFFEL TUTORIAL §848
A variant would be

which would try again up toMax_attempts times before giving up.

The above routine, in either variant, never fails: it always fulfills its contract, which
states that it should either read a character or setfailed to record its inability to do so.
In contrast, consider the new variant

with no more role forfailed. In this case, afterMax_attempts unsuccessful attempts, the
routine will execute itsrescue clause to the end, with noretry (the if having noelse
clause). This is how a routinefails. It will, as noted, pass on the exception to its caller.

Such a rescue clause should, before terminating, restore the invariant of the class
so that the caller and possible subsequentretry attempts from higher up find the objects
in a consistent state. As a result, the rule for an absentrescue clause — the case for
the vast majority of routines in most systems — is that it is equivalent to

local
attempts: INTEGER

do
if attempts < Max_attempts then

last_character := low_level_read_function (f)
else

failed := True
end

rescue
attempts := attempts + 1
retry

end

local
attempts: INTEGER

do
last_character := low_level_read_function (f)

rescue
attempts := attempts + 1
if attempts < Max_attempts then

retry
end

end

rescue
default_rescue

§8 DESIGN BY CONTRACTTM, ASSERTIONS, EXCEPTIONS 49
where proceduredefault_rescue comes fromANY, where it is defined to do nothing;
in a system built for robustness, classes subject to non-explicitly-rescue d exceptions
should redefinedefault_rescue (perhaps using a creation procedure, which is bound
by the same formal requirement) so that it will always restore the invariant.

Behind Eiffel’s exception handling scheme lies the principle — at first an apparent
platitude, but violated by many existing mechanisms — that a routine shouldeither
succeed or fail. This is in turn a consequence of Design by Contract principles:
succeeding means being able to fulfill the contract, possibly after one or moreretry ;
failure is the other case, which must always trigger an exception in the caller. Otherwise
it would be possible for a routine to miss its contract and yet return to its caller in a
seemingly normal state. That is the worst possible way to handle an exception.

Concretely, exceptions may result from the following events:

• A routine failure (rescue clause executed to the end with noretry), as just seen.

• Assertion violation, if for a system that runs with assertion monitoring on.

• Attempt to call a feature on a void reference:x.f (…), the fundamental
computational mechanism, can only work ifx is attached to an object, and will
cause an exception otherwise.

• Developer exception, as seen next.

• Operating system signal:arithmetic overfolow; no memory available for a
requested creation or clone — even after garbage collection has rummaged
everything to find some space. (But no C/C++-like “wrong pointer address”,
which cannot occur thanks to the statically typed nature of Eiffel.)

It is sometimes useful, when handling exceptions inrescue clauses, to ascertain the
exact nature of the exception that got the execution there. For this it is suffices to inherit
from the Kernel Library classEXCEPTIONS, which provides queries such as
exception, giving the code for the last exception, and symbolic names (“Constantand
uniqueattributes”, page83) for all such codes, such asNo_more_memory. You can
then process different exceptions differently by testingexception against various
possibilities. The method strongly suggests, however, that exception handling code
should remain simple; a complicated algorithm in arescue clause is usually a sign that
the mechanism is being misused.

ClassEXCEPTIONS also provides various facilities for fine-tuning the exception
facilities, such as a procedureraise that will explicitly trigger a “developer exception”
with a code than can then be detected and processed.

Exception handling helps produce Eiffel software that is not just correct but
robust, by planning for cases that shouldnotnormally arise, but might out of Murphy’s
law, and ensuring they do not affect the software’s basic safety and simplicity.

AN EIFFEL TUTORIAL §950
Other applications of Design by Contract

The Design by Contract ideas pervade the Eiffel method. In addition to the applications
just mentioned, they have two particularly important consequences:

• They make it possible to use Eiffel for analysis and design. At a high level of
abstraction, it is necessary to be precise too. With the exception of BON, object-
oriented analysis and design methods tend to favor abstraction over precision.
Thanks to assertions, it is possible to express precise properties of a system (“At
what speed should the alarm start sounding?”) without making any commitment
to implementation. The discussion of deferred classes (“Applicationsof deferred
classes”, page60) will show how to write a purely descriptive, non-software
model in Eiffel, using contracts to describe the essential properties of a system
without any computer or software aspect.

• Assertions also serve to control the power of inheritance-related mechanisms —
redeclaration, polymorphism, dynamic binding — and channel them to correct
uses by assigning the proper semantic limits. See“Inheritanceand contracts”,
page 66.

9 INHERITANCE

Inheritance is a powerful and attractive technique. A look at either the practice or
literature shows, however, that it is not always well applied. Eiffel has made a particular
effort to tame inheritance for the benefit of modelers and software developers. Many of
the techniques are original with Eiffel. Paul Dubois has written (comp.lang.python
Usenet newsgroup, 23 March 1997):there are two things that[Eiffel] got right that
nobody else got right anywhere else: support for design by contract, and multiple
inheritance. Everyone should understand these “correct answers” if only to
understand how to work around the limitations in other languages.

Basic inheritance structure

To make a class inherit from another, simply use aninherit clause:

indexing … class D creation … inherit
A
B
…

feature
…

§9 INHERITANCE 51
This makesD an heir ofA, B and any other class listed. Eiffel supportsmultiple
inheritance: a class may have as many parents as it needs. Later sections (“Multiple
inheritanceandrenaming”, page64 and“Repeatedinheritanceandselection”, page
73) will explain how to handle possible conflicts between parent features.

This discussion will rely on the terminology introduced on page14: descendantsof a
class are the class itself, its heirs, the heirs of its heirs and so on.Proper descendants
exclude the class itself. The reverse notions areancestors andproper ancestors.

By defaultD will simply include all the original features ofA, B, …, to which it may
add its own through itsfeature clauses if any. But the inheritance mechanism is more
flexible, allowingD to adapt the inherited features in many ways. Each parent name —
A, B, … in the example — can be followed by a Feature Adaptation clause, with
subclauses, all optional, introduced by keywordsrename , export , undefine ,
redefine andselect , enabling the author ofA to make the best use of the inheritance
mechanism by tuning the inherited features to the precise needs ofD. This makes
inheritance a principal tool in the Eiffel process, mentioned earlier, of carefully crafting
each individual class, like a machine, for the benefit of its clients. The next sections
review the various Feature Adaptation subclauses.

Redefinition

The first form of feature adaptation is the ability to change the implementation of an
inherited feature.

Assume a classSAVINGS_ACCOUNT that specializes the notion of account. It
is probably appropriate to define it as an heir to classACCOUNT, to benefit from all
the features ofACCOUNT still applicable to savings accounts, and to reflect the
conceptual relationship between the two types: every savings account, apart from its
own specific properties, also “is” an account. But we may need to produce a different
effect for proceduredeposit which, besides recording the deposit and updating the
balance, may also need, for example, to update the interest.

This example is typical of the form of reuse promoted by inheritance and crucial
to effective reusability in software: the case ofreuse with adaptation. Traditional forms
of reuse are all-or-nothing: either you take a component exactly as it is, or you build
your own. Inheritance will get us out of this “reuse or redo” dilemma by allowing us to
reuseand redo. The mechanism is feature redefinition:

AN EIFFEL TUTORIAL §952
Without theredefine subclause, the declaration ofdeposit would be invalid, yielding

two features of the same name, the inherited one and the new one. The subclause makes

this valid by specifying that the new declaration will override the old one.

In a redefinition, the original version — such as theACCOUNT implementation

of deposit in this example — is called theprecursor of the new version. It is common

for a redefinition to rely on the precursor’s algorithm and add some other actions; the

reserved wordPrecursor helps achieve this goal simply. Permitted only in a routine

redefinition, it denotes the parent routine being redefined. So here he body of the new

deposit (called “New implementation” above) could be of the form

Besides changing the implementation of a routine, a redefinition can turn an argument-

less function into an attribute; for example a proper descendant ofACCOUNT could

redefinedeposits_count, originally a function, as an attribute. The Uniform Access

Principle (page19) guarantees that the redefinition makes no change for clients, which

will continue to use the feature under the formacc.deposits_count.

indexing
description: "Savings accounts"

class
SAVINGS_ACCOUNT

inherit
ACCOUNT

redefine deposit end
feature -- Element change

deposit (sum: INTEGER) is
-- Add sum to account.

do
… New implementation (see below) …

end
… Other features …

end -- class SAVINGS_ACCOUNT

Precursor (sum) -- Apply ACCOUNT’s version of deposit
… Instructions to update the interest …

§9 INHERITANCE 53
Polymorphism

The inheritance mechanism is relevant to both roles of classes: module and type. Its
application as a mechanism to reuse, adapt and extend features from one class to
another, as just seen, covers its role as amodule extensionmechanism. But it’s also a
subtyping mechanism. To say thatD is an heir ofA, or more generally a descendant of
A, is to expresses that instances ofD can be viewed as instances ofA.

Polymorphic assignmentsupports this second role. In an assignmentx := y, the
types ofx andy do not have, with inheritance, to be identical; the rule is that the type
of y must simplyconform to the type ofx. A classD conforms to a classA if and only
if it is a descendant ofA (which includes the case in whichA andD are the same class);
if these classes are generic, conformance ofD [U] to C [T] requires in addition that type
U conform to typeT (through the recursive application of the same rules).

In addition, it follows from the earlier discussion of tuples (“Tupletypes”, page91),
thatTUPLE [X] conforms toTUPLE, TUPLE [X, Y,] to TUPLE [X] and so on.

So with the inheritance structure that we have seen, the declarations

make it valid to write the assignment

which will assign toacc a reference attached (if not void) to a direct instance of type
SAVINGS_ACCOUNT, notACCOUNT.

Such an assignment, where the source and target types are different, is said to be
polymorphic. An entity such asacc, which as a result of such assignments may become
attached at run time to objects of types other than the one declared for it, is itself called
a polymorphic entity.

For polymorphism to respect the reliability requirements of Eiffel, it must be
controlled by the type system and enable static type checking. We certainly do not want
an entity of typeACCOUNT to become attached to an object of typeDEPOSIT. Hence
the second typing rule:

acc: ACCOUNT; sav: SAVINGS_ACCOUNT

acc := sav

Type Conformance rule
An assignmentx := y, or the use ofy as actual argument corresponding to
the formal argumentx in a routine call, is only valid if the type ofy
conforms to the the type ofx.

AN EIFFEL TUTORIAL §954
The second case listed in the rule is a call such astarget.routine (…, y, …) where the
routine declaration is of the formroutine (…, x: SOME_TYPE, …). The relationship
betweeny, the actual argument in the call, and the corresponding formal argumentx, is
exactly the same as in an assignmentx := y: not just the type rule, as expressed by Type
Conformance (the type ofy must conform toSOME_TYPE), but also the actual run-
time effect which, as for assignments, will be either a reference attachment or, for
expanded types, a copy.

The ability to accept the assignmentx := Void for x of any reference type (“Basic
operations”,page28) is a consequence of the Type Conformance rule, sinceVoid is of
type NONE which by construction (“The global inheritancestructure”, page15)
conforms to all types.

Polymorphism also yields a more precise definition of “instance”. Adirect instance
of a typeA is an object created from the exact pattern defined by the declaration ofA’s
base class, with one field for each of the class attributes; you will obtain it through a
creation instruction of the formcreate x…, for x of typeA, or by cloning an existing
direct instance. Aninstanceof A is a direct instance of any type conforming toA: A itself,
but also any type based on descendant classes. So an instance ofSAVINGS_ACCOUNT
is also an instance, although not a direct instance, ofACCOUNT.

A consequence of polymorphism is the ability to definepolymorphic data
structures. With a declaration such as

accounts: LIST [ACCOUNT]

the procedure callaccounts.extend (acc), because it uses a procedureextend which
in this case expects an argument of any type conforming toACCOUNT, will be valid
not only if acc is of typeACCOUNT but also if it is of a descendant type such as
SAVINGS_ACCOUNT. Successive calls of this kind make it possible to construct a
data structure that, at run-time, might contain objects of several types, all conforming
to ACCOUNT:

Direct
instances
of: ACCOUNT ACCOUNT

SAVINGS_ACCOUNT
MONEY_MARKET_ACCOUNT

Polymorphic
data structure

§9 INHERITANCE 55
Such polymorphic data structures combine the flexibility and safety of genericity
and inheritance. You can make them more or less general by choosing for the actual
generic parameter, hereACCOUNT, a type higher or lower in the inheritance
hierarchy. Static typing is again essential here, prohibiting for example a mistaken
insertion of the formaccounts.extend (dep) wheredep is of typeDEPOSIT, which
does not conform toACCOUNT.

At the higher (most abstract) end of the spectrum, you can produce an
unrestrictedly polymorphic data structuregeneral_list: LIST [ANY] which makes the
call general_list.extend (x) valid for any x. The price to pay is that retrieving an
element from such a structure will yield an object on which the only known applicable
operations are the most general ones, valid for all types: assignment, copy, clone,
equality comparison and others fromANY. Assignment attempt, studied below, will
make it possible to apply more specific operations after checking dynamically that a
retrieved object is of the appropriate type.

Dynamic binding

The complement of polymorphism is dynamic binding, the answer to the question
“What version of a feature will be applied in a call whose target is polymorphic?”.

Consideracc is of typeACCOUNT. Thanks to polymorphism, an object attached
to acc may be a direct instance not just ofACCOUNT but also of
SAVINGS_ACCOUNT or other descendants. Some of these descendants, indeed
SAVINGS_ACCOUNT among them, redefine features such asdeposit. Then we have
to ask what the effect will be for a call of the form

Dynamic binding is the clearly correct answer: the call will execute the version of
deposit from the generating class of the object attached toacc at run time. Ifacc is
attached to a direct instance ofACCOUNT, execution will use the originalACCOUNT
version; ifacc is attached to a direct instance ofSAVINGS_ACCOUNT, the call will
execute the version redefined in that class.

This is a clear correctness requirement. A policy ofstatic binding(as available for
example in C++ or Delphi, for non-virtual functions) would take the declaration ofacc
as anACCOUNT literally. But that declaration is only meant to ensure generality, to
enable the use of a single entityacc in many different cases: what counts at execution
time is the object thatacc represents. Applying theACCOUNT version to a
SAVINGS_ACCOUNT object would be wrong, possibly leading in particular to
objects that violate the invariant of their own generating class (since there is no reason
a routine ofACCOUNT will preserve the specific invariant of a proper descendant such
asSAVINGS_ACCOUNT, which it does not even know about).

acc.deposit (some_value)

AN EIFFEL TUTORIAL §956
In some cases, the choice between static and dynamic binding does not matter: this
is the case for example if a call’s target is not polymorphic, or if the feature of the call
is redefined nowhere in the system. In such cases the use of static binding permits
slightly faster calls (since the feature is known at compile time). This application of
static binding should, however, be treated as acompiler optimization. The
EiffelStudio compiler, under its “finalization” mode, which performs extensive
optimization, will detect some of these cases and process them accordingly — unlike
approaches that make developers responsible for specifying what should be static and
what dynamic (a tedious and error-prone task, especially delicate because a minute
change in the software can make a static call, in a far-away module of a large system,
suddenly become dynamic). Eiffel programmers don’t need to worry about such
aspects; they can rely on the semantics of dynamic binding in all cases, with the
knowledge that the compiler will apply static binding when safe and desirable.

Even in cases that require dynamic binding, the design of Eiffel, in particular the
typing rules, enable compilers to make the penalty over the static-binding calls of
traditional approaches very small and, most importantly,constant-bounded: it does
not grow with the depth or complexity of the inheritance structure. The discovery in
1985 of a technique for constant-time dynamic binding calls, even in the presence of
multiple and repeated inheritance, was the event that gave the green light to the
development of Eiffel.

Dynamic binding is particularly interesting for polymorphic data structures. If you
iterate over the list of accounts of various kinds,accounts: LIST [ACCOUNT],
illustrated in the last figure, and at each step letacc represent the current list element,
you can repeatedly apply

to have the appropriate variant of thedeposit operation triggered for each element.

The benefit of such techniques appears clearly if we compare them with the
traditional way to address such needs: using multi-branch discriminating instructions
of the formif “Account is a savings account” then … elseif “It is a money market
account” then … and so on, or the correspondingcase … of …, switch or inspect
instructions. Apart from their heaviness and complexity, such solutions cause many
components of a software system to rely on the knowledge of the exact set of variants
available for a certain notion, such as bank account. Then any addition, change or
removal of variants can cause a ripple of changes throughout the architecture. This is

acc.deposit (…)

§9 INHERITANCE 57
one of the majors obstacles to extendibility and reusability in traditional approaches. In
contrast, using the combination of inheritance, redefinition, polymorphism and
dynamic binding makes it possible to have apoint of single choice— a unique location
in the system which knows the exhaustive list of variants. Every client then manipulates
entities of the most general type,ACCOUNT, through dynamically bound calls of the
form acc.some_account_ feature (…).

These observations make dynamic binding appear for what it is: not an
implementation mechanism, but anarchitectural technique that plays a key role
(along with information hiding, which it extends, and Design by Contract, to which it
is linked through the assertion redefinition rules seen below) in providing the modular
system architectures of Eiffel, the basis for the method’s approach to reusability and
extendibility. These properties apply as early as analysis and modeling, and continue to
be useful throughout the subsequent steps.

Deferred features and classes

The examples of dynamic binding seen so far assumed that all classes were fully
implemented, and dynamically bound features had a version in every relevant class,
including the most general ones such asACCOUNT.

It is also useful to define classes that leave the implementation of some of their
features entirely to proper descendants. Such an abstract class is known asdeferred ;
so are its unimplemented features. The reverse of deferred iseffective , meaning fully
implemented.

LIST is a typical example of deferred class. As it describes the general notion of
list, it should not favor any particular implementation; that will be the task of its
effective descendants, such asLINKED_LIST (linked implementation),
TWO_WAY_LIST (linked both ways), ARRAYED_LIST (implementation by an
array), all effective, and all indeed to be found in EiffelBase.

At the level of the deferred classLIST, some features such asextend (add an item
at the end of the list) will have no implementation and hence will be declared as
deferred. Here is the corresponding form, illustrating the syntax for both deferred
classes and their deferred features:

AN EIFFEL TUTORIAL §958
A deferred feature (considered to be a routine, although it can yield an attribute in

a proper descendant) has the single keyworddeferred in lieu of the do
Instructions clause of an effective routine. A deferred class — defined as a class

that has at least one deferred feature — must be introduced bydeferred class
instead of justclass .

As the example ofextend shows, a deferred feature, although it has no

implementation, can be equipped with assertions. They will be binding on

implementations in descendants, in a way to be explained below.

Deferred classes do not have to befully deferred. They may contain some

effective features along with their deferred ones. Here, for example, we may express
count as a function:

indexing
description: "Sequential finite lists, without a commitment%[

to a representation%]"
deferred class

LIST [G]
feature -- Access

count: INTEGER is
-- Number of items in list

do
… See below; this feature can be effective …

end

feature -- Element change
extend (x: G) is

-- Add x at end of list.
require

space_available: not full
deferred
ensure

one_more: count = old count + 1
end

… Other feature declarations and invariant …
end -- class LIST

§9 INHERITANCE 59
This implementation relies on the loop construct described below (from introduces the
loop initialization) and on a set of deferred features of the class which allow traversal
of a list based on moving a fictitious cursor:start to bring the cursor to the first element
if any, after to find out whether all relevant elements have been seen, andforth (with
preconditionnot after) to advance the cursor to the next element. Procedureforth itself
appears as

whereindex — another deferred feature — is the integer position of the cursor.

Although the above version of featurecount is time-consuming — it implies a
whole traversal just for the purpose of determining the number of elements — it has the
advantage of being applicable to all variants, without any commitment to a choice of
implementation, as would follow for example if we decided to treatcount as an
attribute. Proper descendants can always redefinecount for more efficiency.

Functioncount illustrates one of the most important contributions of the method
to reusability: the ability to definebehavior classesthat capture common behaviors
(such as count) while leaving the details of the behaviors (such asstart, after, forth)
open to many variants. As noted earlier, traditional approaches to reusability provide
closed reusable components. A component such asLIST, although equipped with
directly usable behaviors such as count, is open to many variations, to be provided by
proper descendants.

Some O-O languages support only the two extremes: fully effective classes, and fully
deferred “interfaces”, but not classes with a mix of effective and deferred features.
This is an unacceptable limitation, negating the object-oriented method’s support for
a seamless, continuous spectrum from the most abstract to the most concrete.

count: INTEGER is
-- Number of items in list

do
from start until after loop

Result := Result + 1; forth
end

end

forth is
-- Advance cursor by one position

require
not_after: not after

deferred
ensure

moved_right: index = old index + 1
end

AN EIFFEL TUTORIAL §960
A classB inheriting from a deferred classA may provide implementations — effective
declarations — for the features inherited in deferred form. In this case there is no need
for a redefine subclause; the effective versions simply replace the inherited versions.
The class is said toeffect the corresponding features. If after this process there remain
any deferred features, B is still considered deferred, even if it introduces no deferred
features of its own, and must be declared asdeferred class .

In the example, classes such asLINKED_LIST andARRAYED_LIST will effect
all the deferred features they inherit fromLIST — extend, start etc. — and hence will
be effective.

Except in some applications restricted to pure system modeling — as discussed
next — the main benefit of deferred classes and features comes from polymorphism
and dynamic binding. Becauseextend has no implementation in classLIST, a call of
the formmy_list.extend (…) with my_list of typeLIST [T] for someT can only be
executed ifmy_list is attached to a direct instance of an effective proper descendant of
LIST, such asLINKED_LIST; then it will use the corresponding version ofextend.
Static binding would not even make sense here.

Even an effective feature ofLIST such as count may depend on deferred features
(start and so on), so that a call of the form my_list.count can only be executed in the
context of an effective descendant.

All this indicates that a deferred class must haveno direct instance. (It will have
instances, the direct instances of its effective descendants.) If it had any, we could call
deferred features on them, leading to execution-time impossibility. The rule that
achieves this goal is simple: if the base type ofx is a deferred class, no creation
instruction of targetx, of the formcreate x …, is permitted.

Applications of deferred classes

Deferred classes cover abstract notions with many possible variants. They are widely
used in Eiffel where they cover various needs:

• Capturing high-level classes, with common behaviors.

• Defining the higher levels of a general taxonomy, especially in the inheritance
structure of a library.

• Defining the components of an architecture during system design, without
commitment to a final implementation.

• Describing domain-specific concepts in analysis and modeling.

§9 INHERITANCE 61
These applications make deferred classes a central tool of the Eiffel method’s support
for seamlessness and reversibility. The last one in particular uses deferred classes and
features to model objects from an application domain, without any commitment to
implementation, design, or even software (and computers). Deferred classes are the
ideal tool here: they express the properties of the domain’s abstractions, without any
temptation of implementation bias, yet with the precision afforded by type declarations,
inheritance structures (to record classifications of the domain concepts), and contracts
to express the abstract properties of the objects being described.

Rather than using a separate method and notation for analysis and design, this
apprroach integrates seamlessly with the subsequent phases (assuming the decision is
indeed taken to develop a software system): it suffices to refine the deferred classes
progressively by introducing effective elements, either by modifying the classes
themselves, or by introducing design- and implementation-oriented descendants. In the
resulting system, the classes that played an important role for analysis, and are the most
meaningful for customers, will remain important; as we have seen (“Seamlessnessand
reversibility”, page 9) thisdirect mappingproperty is a great help for extendibility.

The following sketch (from the bookObject-OrientedSoftware Construction)
illustrates these ideas on the example of scheduling the programs of a TV station. This
is pure modeling of an application domain; no computers or software are involved yet.
The class describes the notion of program segment.

Note the use of assertions to define semantic properties of the class, its instances
and its features. Although often presented as high-level, most object-oriented analysis
methods (with the exception of Waldén’s and Nerson’s Business Object Notation) have
no support for the expression of such properties, limiting themselves instead to the
description of broad structural relationships.

indexing
description: "Individual fragments of a broadcasting schedule"

deferred class
SEGMENT

feature -- Access
schedule: SCHEDULE is deferred end

-- Schedule to which segment belongs
index: INTEGER is deferred end

-- Position of segment in its schedule
starting_time, ending_time: INTEGER is deferred end

-- Beginning and end of scheduled air time
next: SEGMENT is deferred end

-- Segment to be played next, if any

http://eiffel.com/doc/oosc/

AN EIFFEL TUTORIAL §962
Structural property classes

Some deferred classes describe a structural property, useful to the description of many
other classes. Typical examples are classes of the Kernel Library in EiffelBase:

• NUMERIC describes objects on which arithmetic operations +, –,∗, / are
available, with the properties of a ring (associativity, distributivity, zero elements
etc.). Kernel Library classes such asINTEGER and REAL — but not, for
example,STRING — are descendants ofNUMERIC. An application that defines
a classMATRIX may also make it a descendant ofNUMERIC.

sponsor: COMPANY is deferred end
-- Segment’s principal sponsor

rating: INTEGER is deferred end
-- Segment’s rating (for children’s viewing etc.)

Minimum_duration: INTEGER is 30
-- Minimum length of segments, in seconds

Maximum_interval: INTEGER is 2
-- Maximum time (seconds) between successive segments

feature -- Element change
set_sponsor (s: SPONSOR) is

require
not_void: s /= Void

deferred
ensure

sponsor_set: sponsor = s
end

… change_next, set_rating omitted …
invariant

in_list: (1 <= index) and (index <= schedule.segments.count)
in_schedule: schedule.segments.item (index) = Current
next_in_list: (next /= Void) implies

(schedule.segments.item (index + 1) = next)
no_next_iff_last: (next = Void) =

(index = schedule.segments.count)
non_negative_rating: rating >= 0
positive times: (starting_time > 0) and (ending_time > 0)
sufficient_duration: ending_time – starting_time >=

Minimum_duration
decent_interval: (next.starting_time) – ending_time <=

Maximum_interval
end

§9 INHERITANCE 63
• COMPARABLE describes objects on which comparison operations <, <=, >, >=
are available, with the properties of a total preorder (transitivity, irreflexivity).
Kernel Library classes such asCHARACTER, STRING andINTEGER — but
not outMATRIX example — are descendants ofNUMERIC.

For such classes it is again essential to permit effective features in a deferred class, and
to include assertions. For example classCOMPARABLE declares infix "<" as
deferred, and expresses>, >= and<= effectively in terms of it.

The typelike Current will be explained in“Covarianceandanchoreddeclarations”,page
79; you may understand it, in the following class, as equivalent toCOMPARABLE.

indexing
description: "Objects that can be compared according to a total

preorder relation"
deferred class

COMPARABLE

feature -- Comparison
infix "<" (other: like Current): BOOLEAN is

-- Is current object less than other?
require

other_exists: other /= Void
deferred
ensure

asymmetric: Result implies not (other < Current)
end

infix "<=" (other: like Current): BOOLEAN is
-- Is current object less than or equal to other?

require
other_exists: other /= Void

do
Result := (Current < other) or is_equal (other)

ensure
definition: Result = (Current < other) or

is_equal (other)
end

… Other features: infix ">", min, max, …
invariant

irreflexive: not (Current < Current)
end -- class COMPARABLE

AN EIFFEL TUTORIAL §964
Multiple inheritance and renaming

It is often necessary to define a new class in terms of several existing ones. For example:

• The Kernel Library classesINTEGER and REAL must inherit from both
NUMERIC andCOMPARABLE.

• A classTENNIS_PLAYER, in a system for keeping track of player ranking, will
inherit fromCOMPARABLE, as well as from other domain-specific classes.

• A classCOMPANY_PLANE may inherit from bothPLANE andASSET.

• ClassARRAYED_LIST, describing an implementation of lists through arrays,
may inherit from bothLIST andARRAY.

In all such cases multiple inheritance provides the answer.

Multiple inheritance can causename clashes: two parents may include a feature
with the same name. This would conflict with the ban on name overloading within a
class — the rule that no two features of a class may have the same name. Eiffel provides
a simple way to remove the name clash at the point of inheritance through therename
subclause, as in

Here bothLIST andARRAY have features calledcount and item. To make the new
class valid, we give new names to the features inherited fromARRAY, which will be
known within ARRAYED_LIST as capacity and array_item. Of course we could
have renamed theLIST versions instead, or renamed along both inheritance branches.

indexing
description: "Sequential finite lists implemented as arrays"

class
ARRAYED_LIST [G]

inherit
LIST [G]
ARRAY [G]

rename
count as capacity, item as array_item

end
feature

…
end -- class ARRAYED_LIST

§9 INHERITANCE 65
Every feature of a class has afinal name: for a feature introduced in the class itself

(“immediate” feature) it is the name appearing in the declaration; for an inherited

feature that is not renamed, it is the feature’s name in the parent; for a renamed feature,

it is the name resulting from the renaming. This definition yields a precise statement of

the rule against in-class overloading:

It is interesting to compare renaming and redefinition. The principal distinction is

between features and feature names. Renaming keeps a feature, but changes its name.

Redefinition keeps the name, but changes the feature. In some cases, it is of course

appropriate to do both.

Renaming is interesting even in the absence of name clashes. A class may inherit

from a parent a feature which it finds useful for its purposes, but whose name,

appropriate for the context of the parent, is not consistent with the context of the heir.

This is the case withARRAY ’s featurecount in the last example: the feature that

defines the number of items in an array — the total number of available entries —

becomes, for an arrayed list, themaximumnumber of list items; the truly interesting

indication of the number of items is the count of how many items have been inserted in

the list, as given by featurecount from LIST. But even if we did not have a name clash

because of the two inheritedcount features we should renameARRAY’s count as

capacity to maintain the consistency of the local feature terminology.

Therename subclause appears before all the other feature adaptation subclauses

— redefine already seen, and the remaining onesexport , undefine andselect —

since an inherited feature that has been renamed sheds its earlier identity once and for

all: within the class, and to its own clients and descendants, it will be known solely

through the new name. The original name has simply disappeared from the name space.

This is essential to the view of classes presented earlier: self-contained, consistent

abstractions prepared carefully for the greatest enjoyment of clients and descendants.

Final Name rule
Two different features of a class may not have the same final name.

AN EIFFEL TUTORIAL §966
Inheritance and contracts

A proper understanding of inheritance requires looking at the mechanism in the
framework of Design by Contract, where it will appear as a form ofsubcontracting.

The first rule is that invariants accumulate down an inheritance structure:

The invariant of a class is automatically considered to include — in the sense of logical
“and” — the invariants of all its parents. This is a consequence of the view of
inheritance as an “is” relation: if we may consider every instance ofB as an instance of
A, then every consistency constraint on instances ofA must also apply to instances ofB.

Next we consider routine preconditions and postconditions. The rule here will
follow from an examination of what contracts mean in the presence of polymorphism
and dynamic binding.

Consider a parentA and a proper descendantB (a direct heir on the following
figure), which redefines a routiner inherited fromA.

As a result of dynamic binding, a calla1.r from a clientC may be serviced not byA’s
version ofr but byB’s version ifa1, although declared of typeA, becomes at run time
attached to an instance ofB. This shows the combination of inheritance, redefinition,
polymorphism and dynamic binding as providing a form of subcontracting;A
subcontracts certain calls toB.

Invariant Accumulation rule
The invariants of all the parents of a class apply to the class itself.

A

r is
require

pre
…
ensure

post
end

C

B

r is
require

pre’
…
ensure

post’
end

Inheritance

Client

Client, parent
and heir

§9 INHERITANCE 67
The problem is to keep subcontractors honest. Assuming preconditions and
postconditions as shown on the last figure, a call inC of the form

or just a1.q; a1.r where the postcondition ofq implies the preconditionpre of r,
satisfies the terms of the contract and hence is entitled to being handled correctly — to
terminate in a state satisfyinga1.post. But if we let the subcontractorB redefine the
assertions to arbitrarypre’ andpost’, this is not necessarily the case:pre’ could be
stronger thanpre, enablingB not to process correctly certain calls that are correct from
A’s perspective; andpost’ could be weaker thanpost, enablingB to do less of a job than
advertized forr in the Contract Form ofA, the only official reference for authors of
client classes such asC. (An assertionp is stronger than or equal to an assertionq if p
impliesq in the sense of boolean implication.)

The rule, then, is that for the redefinition to be correct the new preconditionpre’
must be weaker than or equal to the originalpre, and the new postconditionpost’ must
be stronger than or equal to the originalpost’.

Because it is impossible to check simply that an assertion is weaker or stronger
than another, the language rule relies on different forms of the assertion constructs,
require else and ensure then , for redeclared routines. They rely on the
mathematical property that, for any assertionsp and q, p implies (p or q), and
(p and q) impliesp. For a precondition, usingrequire else with a new assertion will
perform anor, which can only weaken the original; for a postcondition,ensure then
will perform anand , which can only strengthen the original. Hence the rule:

The last case — retaining the original — is frequent but by no means universal.

if a1.pre then a1.r end

Assertion Redeclaration rule
In the redeclared version of a routine, it is not permitted to use arequire
or ensure clause. Instead you may:

• Introduce a new condition withrequire else , for or-ing with the
original precondition.

• Introduce a new condition withensure then , for and-ing with the
original postcondition.

In the absence of such a clause, the original assertions are retained.

AN EIFFEL TUTORIAL §968
The Assertion Redeclaration rule applies toredeclarations. This terms covers not

just redefinition but also effecting (the implementation, by a class, of a feature that it

inherits deferred). The rules — not just for assertions but also, as reviewed below, for

typing — are indeed the same in both cases. Without the Assertion Redeclaration rule,

assertions on deferred features, such as those onextend, count andforth in “Deferred

featuresandclasses”,page57, would be almost useless — wishful thinking; the rule

makes them binding on all effectings in descendants.

From the Assertion Redeclaration rule follows an interesting technique:abstract
preconditions. What needs to be weakened for a precondition (or strengthened for a

postcondition) is not the assertion’s concrete semantics but its abstract specification as

seen by the client. A descendant can change theimplementationof that specification as

it pleases, even to the effect of strengthening the concrete precondition, as long as the

abstract form is kept or weakened. The precondition of procedureextend in the

deferred classLIST provided an example. We wrote the routine (page58) as

The precondition expresses that it is only possible to add an item to a list if the

representation is not full. We may well consider — in line with the Eiffel principle that

whenever possible structures should be of unbounded capacity — thatLIST should by

default makefull always return false:

extend (x: G) is
-- Add x at end of list.

require
space_available: not full

deferred
ensure

one_more: count = old count + 1
end

full: BOOLEAN is
-- Is representation full?
-- (Default: no)

do
Result := False

end

§9 INHERITANCE 69
Now a classBOUNDED_LIST that implements bounded-size lists (inheriting,

like the earlierARRAYED_LIST, from bothLIST andARRAY) may redefinefull:

Procedureextend remains applicable as before; any client that used it properly with

LIST can rely polymorphically on theFIXED_LIST implementation. The abstract

precondition ofextend has not changed, even though the concrete implementation of

that precondition has in fact been strengthened.

Note that a class such asBOUNDED_LIST, the likes of which indeed appear in

EiffelBase, is not a violation of the Eiffel advice to stay away from fixed-size structures.

The corresponding structures are bounded, but the bounds are changeable. Although

extend requiresnot full, another feature, calledforce in all applicable classes, will add

an element at the appropriate position by resizing and reallocating the structure if

necessary. Even arrays in Eiffel are not fixed-size, and have a procedureforce with no

precondition, accepting any index position.

The Assertion Redeclaration rule, together with the Invariant Accumulation rule,

provides the right methodological perspective for understanding inheritance and the

associated mechanisms. Defining a class as inheriting from another is a strong

commitment; it means inheriting not only the features but the logical constraints.

Redeclaring a routine is bound by a similar committment: to provide a new

implementation (or, for an effecting, a first implementation) of a previously defined

semantics, as expressed by the original contract. Usually you have a wide margin for

choosing your implementation, since the contract only defines a range of possible

behaviors (rather than just one behavior), but youmust remain within that range.

Otherwise you would be perverting the goals of redeclaration, using this mechanism as

a sort of late-stage hacking to override bugs in ancestor classes.

full: BOOLEAN is
-- Is representation full?
-- (Answer: if and only if number of items is capacity)

do
Result := (count = capacity)

end

AN EIFFEL TUTORIAL §970
Join and uneffecting
It is not an error to inherit two deferred features from different parents under the same
name, provided they have the same signature (number and types of arguments and result).
In that case a process offeature join takes place: the features are merged into just one —
with their preconditions and postconditions, if any, respectively or-ed and and-ed.

More generally, it is permitted to have any number of deferred features and at most
oneeffective feature that share the same name: the effective version, if present will
effect all the others.

All this is not a violation of the Final Name rule (page65), since the name clashes
prohibited by the rule involve twodifferentfeatures having the same final name; here
the result is justone feature, resulting from the join of all the inherited versions.

Sometimes we may want to joineffectivefeatures inherited from different parents,
assuming again the features have compatible signatures. One way is to redefine them
all into a new version; then they again become one feature, with no name clash in the
sense of the Final Name rule. But in other cases we may simply want one of the
inherited implementations to take over the others. The solution is to revert to the
preceding case byuneffecting the other features; uneffecting an inherited effective
feature makes it deferred (this is the reverse of effecting, which turns an inherited
deferred feature into an effective one). The syntax uses theundefine subclause:

Again what counts, to determine if there is an invalid name clash, is the final name of
the features. In this example to of the joined features were originally calledf; the one
from A was calledg, but in D it is renamed asf, so without the undefinition it would
cause an invalid name clash.

Feature joining is the most common application of uneffecting. In some non-
joining cases, however, it may be useful to forget the original implementation of a
feature and let it start a new life devoid of any burden from the past.

class D inherit
A

rename
g as f -- g was effective in A

undefine
f

end
B

undefine f end -- f was effective in B
C

-- C also has an effective feature f, which will serve as
-- implementation for the result of the join.

feature
…

§9 INHERITANCE 71
Changing the export status

Another Feature Adaptation subclause,export , makes it possible to change the export
status of an inherited feature. By default — covering the behavior desired in the vast
majority of practical cases — an inherited feature keeps its original export status
(exported, secret, selectively exported). In some cases, however, this is not appropriate:

• A feature may have played a purely implementation-oriented role in the parent, but
become interesting to clients of the heir. Its status will change from secret to exported.

• In implementation inheritance (for exampleARRAYED_LIST inheriting from
ARRAY) an exported feature of the parent may not be suitable for direct use by
clients of the heir. The change of status in this case is from exported to secret.

You can achieve either of these goals by writing

This gives a new export status to the features listed (under their final names since, as
noted,export like all other subclauses comes afterrename if present): they become
exported to the classes listed. In most cases this list of classes,X, Y, …, consists of just
ANY, to re-export a previously secret feature, orNONE, to hide a previously exported
feature. It is also possible, in lieu of the feature list, to use the keywordall to apply the
new status to all features inherited from the listed parent. Then there can be more than
one class-feature list, as in

class D inherit
A

export {X, Y, …} feature1, feature2, … end
…

class ARRAYED_LIST [G] inherit
ARRAY [G]

rename
count as capacity, item as array_item, put as array_put

export
{NONE} all
{ANY} capacity

end
…

AN EIFFEL TUTORIAL §972
where any explicit listing of a feature, such ascapacity, takes precedence over the export
status specified forall . Here most features ofARRAY are secret inARRAYED_LIST,
because the clients should not permitted to manipulate array entries directly: they will
manipulate them indirectly through list features such asextend and item, whose
implementation relies onarray_item and array_put. But ARRAY’s featurecount
remains useful, under the namecapacity, to the clients ofARRAYED_LIST.

Flat and Flat-Contract Forms

Thanks to inheritance, a concise class text may achieve a lot, relying on all the features
inherited from direct and indirect ancestors.

This is part of the power of the object-oriented form of reuse, but can create a
comprehension and documentation problem when the inheritance structures become
deep: how does one understand such a class, either as client author or as maintainer?
For clients, the Contract Form, entirely deduced from the class text, does not tell the
full story about available features; and maintainers must look to proper ancestors for
much of the relevant information.

These observations suggest ways to produce, from a class text, a version that is
equivalent feature-wise and assertion-wise, but has no inheritance dependency. This is
called theFlat Form of the class. It is a class text that has no inheritance clause and
includes all the features of the class, immediate (declared in the class itself) as well as
inherited. For the inherited features, the flat form must of course take account of all the
feature adaptation mechanisms: renaming (each feature must appear under its final
name), redefinition, effecting, uneffecting and export status change. For redeclared
features,require else clauses are or-ed with the precursors’ preconditions, and
ensure then clauses are and-ed with precursors’ postconditions. For invariants, all the
ancestors’ clauses are concatenated. As a result, the flat form yields a view of the class,
its features and its assertions that conforms exactly to the view offered to clients and
(except for polymorphic uses) heirs.

As with the Contract Form (“The contractform of a class”, page44), producing
the Flat Form is the responsibility of tools in the development environment. In
EiffelStudio, you will just click the “Flat” icon.

The Contract Form of the Flat Form of a class is known as its Flat-Contract
Form. It gives the complete interface specification, documenting all exported features
and assertions — immediate or inherited — and hiding implementation aspects. It is
the appropriate documentation for a class.

§9 INHERITANCE 73
Repeated inheritance and selection

An inheritance mechanism, following from multiple inheritance, remains to be seen.
Through multiple inheritance, a class can be a proper descendant of another through
more than one path. This is called repeated inheritance and can be indirect, as in the
following figure, or even direct, when a classD lists a classA twice in itsinherit clause.

The figure’s particular example is in fact often used by introductory presentations of
multiple inheritance, which is a pedagogical mistake: simple multiple inheritance
examples (such asINTEGER inheriting from NUMERIC and COMPARABLE, or
COMPANY_PLANE from ASSET andPLANE) should involve the combination of
separate abstractions. Repeated inheritance is an advanced technique; although
invaluable, it does not arise in elementary uses and requires a little more care.

In fact there is only one non-trivial issue in repeated inheritance: what does a
feature of the repeated ancestor, such aschange_address andcomputer_account,
mean for the repeated descendant, hereTEACHING_ASSISTANT ? (The example
features chosen involve a routine and an attribute; the basic rules will be the same.)

There are two possibilities: sharing (the repeatedly inherited feature yields just one
feature in the repeated descendant) and duplication (it yields two). Examination of
various cases shows quickly that a fixed policy, or one that would apply to all the
features of a class, would be inappropriate.

• Featurechange_address calls for sharing: as a teaching assistant, you may be
both teacher and student, but you are just one person, with just one official domicile.

• If there are separate accounts for students’ course work and for faculty, you may
need one of each kind, suggesting thatcomputer_account calls for duplication.

TEACHING_
ASSISTANT

UNIVERSITY
_PERSON

STUDENTTEACHER

change_address

computer_account

Inheritance

Indirect
repeated
inheritance

AN EIFFEL TUTORIAL §974
The Eiffel rule enables, once again, the software developer to craft the resulting class
so as to tune it to the exact requirements. Not surprisingly, it is based on names, in
accordance with the Final Name rule (no in-class overloading):

So to tune the repeated descendant, feature by feature, for sharing and replication it
suffices to use renaming.

• Doing nothing will cause sharing, which is indeedthe desired policy in most cases
(especially those cases ofunintendedrepeated inheritance: makingD inherit from
A even though it also inherits fromB, which you forgot is already a descendant of
A).

• If you use renaming somewhere along the way, so that the final names are
different, you will obtain two separate features. It does not matter where the
renaming occurs; all that counts is whether in the common descendant,
TEACHING_ASSISTANT in the last figure, the names are the same or different.
So you can use renaming at that last stage to cause replication; but if the features
have been renamed higher you can also use last-minute renaming toavoid
replication, by bringing them back to a single name.

The Repeated Inheritance rule gives the desired flexibility to disambiguate the meaning
of repeatedly inherited features. There remains a problem in case of redeclaration and
polymorphism. Assume that somewhere along the inheritance paths one or both of two
replicated versions of a featuref, such ascomputer_account in the example, has been
redeclared; we need to define the effect of a calla.f (a.computer_account in the
example) ifa is of the repeated ancestor type, hereUNIVERSITY_PERSON, and has
become attached as a result of polymorphism to an instance of the repeated descendant,
here TEACHING_ASSISTANT. If one or more of the intermediate ancestors has
redefined its version of the feature, the dynamically-bound call has two or more
versions to choose from.

Repeated Inheritance rule
• A feature inherited multiply under one name will be shared: it is

considered to be just one feature in the repeated descendant.

• A feature inherited multiply under different names will be
replicated, yielding as many variants as names.

§9 INHERITANCE 75
A select clause will resolve the ambiguity, as in

We assume here that that no other renaming has occurred —
TEACHING_ASSISTANT takes care of the renaming to ensure replication — but that
one of the two parents has redefinedcomputer_account, for exampleTEACHER to
express the special privileges of faculty accounts. In such a case the rule is that one (and
exactly one) of the two parent clauses inTEACHING_ASSISTANT must select the
corresponding version. Note that no problem arises for an entity declared as

since the valid calls are of the formta.faculty_account and ta.student_account,
neither of them ambiguous; the callta.computer_account would be invalid, since
after the renamings classTEACHING_ASSISTANT has no feature of that name. The
select only applies to a call

with up of type UNIVERSITY_PERSON, dynamically attached to an instance of
TEACHING_ASSISTANT; then theselect resolves the ambiguity by causing the call
to use the version fromTEACHER.

So if you traverse a listcomputer_users: LIST [UNIVERSITY_PERSON] to
print some information about the computer account of each list element, the account
used for a teaching assistant is the faculty account, not the student account.

You may, if desired, redefinefaculty_account in classTEACHING_ASSISTANT,
using student_account if necessary, to take into consideration the existence of
another account. But in all cases we need a precise disambiguation of what
computer_account means for aTEACHING_ASSISTANT object known only
through aUNIVERSITY_PERSON entity.

class TEACHING_ASSISTANT inherit
TEACHER

rename
computer_account as faculty_account

select
faculty_account

end
STUDENT

rename
computer_account as student_account

end
…

ta: TEACHING_ASSISTANT

up.computer_account

AN EIFFEL TUTORIAL §976
Theselect is only needed in case of replication. If the Repeated Inheritance rule would
imply sharing, as with change_address, and one or both of the shared versions has been
redeclared, the Final Name rule makes the class invalid, since it now hastwo different
featureswith the same name. (This is only a problem if both versions are effective; if
one or both are deferred there is no conflict but a mere case of feature joining as
explained in“Join anduneffecting”, page70.) The two possible solutions follow from
the previous discussions:

• If you do want sharing, one of the two versions must take precedence over the
other. It suffices toundefine the other, and everything gets back to order.
Alternatively, you can redefine both into a new version, which takes precedence
over both.

• If you want to keep both versions, switch from sharing to replication: rename one
or both of the features so that they will have different names; then you mustselect
one of them.

Constrained genericity

Eiffel’s inheritance mechanism has an important application to extending the flexibility
of thegenericity mechanism. In a classSOME_CONTAINER [G], as noted (section
7), the only operations available on entities of typeG, the formal generic parameter, are
those applicable to entities of all types. A generic class may, however, need to assume
more about the generic parameter, as with a classSORTABLE_ARRAY [G…] which
will have a proceduresort that needs, at some stage, to perform tests of the form

whereitem (i) anditem (j) are of typeG. But this requires the availability of a feature
infix "<" in all types that may serve as actual generic parameters corresponding toG.
Using the typeSORTABLE_ARRAY [INTEGER] should be permitted, because
INTEGER has such a feature; but notSORTABLE_ARRAY [COMPLEX] if there is
no total order relation onCOMPLEX.

To cover such cases, declare the class as

making it constrained generic. The symbol–> recalls the arrow of inheritance
diagrams; what follows it is a type, known as the generic constraint. Such a declaration
means that:

• Within the class, you may apply the features of the generic constraint — here the
features ofCOMPARABLE: infix "<", infix "<=" etc. — to expressions of typeG.

if item (i) < item (j) then …

class SORTABLE_ARRAY [G –> COMPARABLE]

§9 INHERITANCE 77
• A generic derivation is only valid if the chosen actual generic parameter conforms
to the constraint. Here you can useSORTABLE_ARRAY [INTEGER] since
INTEGER inherits from COMPARABLE, but not SORTABLE_ARRAY
[COMPLEX] if COMPLEX is not a descendant ofCOMPARABLE.

A class can have a mix of constrained and unconstrained generic parameters, as in the
EiffelBase classHASH_TABLE [G, H –> HASHABLE] whose first parameter
represents the types of objects stored in a hash table, the second representing the types
of the keys used to store them, which must beHASHABLE. As these examples suggest,
structural property classes such asCOMPARABLE, NUMERIC andHASHABLE are
the most common choice for generic constraints.

Unconstrained genericity, as inC [G], is defined as equivalent toC [G –> ANY].

Assignment attempt

The Type Conformance rule (“Polymorphism”, page53) ensures type safety by
requiring all assignments to be from a more specific source to a more general target.

Sometimes you can’t be sure of the source object’s type. This happens for example
when the object comes from the outside — a file, a database, a network. The persistence
storage mechanism(“Deepoperationsandpersistence”,page30) includes, along with
the procedurestore seen there, the reverse operation, a functionretrieved which yields
an object structure retrieved from a file or network, to which it was sent usingstore.
But retrieved as declared in the corresponding classSTORABLE of EiffelBase can
only return the most general type,ANY; it is not possible to know its exact type until
execution time, since the corresponding objects are not under the control of the
retrieving system, and might even have been corrupted by some external agent.

In such cases you cannot trust the declared type but must check it against the type
of an actual run-time object. Eiffel introduces for this purpose theassignment attempt
operation, written

with the following effect (only applicable ifx is a writable entity of reference type):

• If y is attached, at the time of the instruction’s execution to an object whose type
conforms to the type ofx, perform a normal reference assignment.

• Otherwise (ify is void, or attached to a non-conforming object), makex void.

x ?= y

AN EIFFEL TUTORIAL §978
Using this mechanism, a typical object structure retrieval will be of the form

As another application, assume we have aLIST [ACCOUNT] and class
SAVINGS_ACCOUNT, a descendant ofACCOUNT, has a featureinterest_rate
which was not inACCOUNT. We want to find the maximum interest rate for savings
accounts in the list. Assignment attempt easily solves the problem:

Note that if there is no savings account at all in the list the assignment attempt will
always yield void, so that the result of the function will be 0, the default initialization.

Assignment attempt is useful in the cases cited — access to external objects
beyond the software’s own control, and access to specific properties in a polymorphic
data structure. The form of the instruction precisely serves these purposes; not being a
general type comparison, but only a verification of a specific expected type, it does not
carry the risk of encouraging developers to revert to multi-branch instruction structures,
for which Eiffel provides the far preferable alternative of polymorphic, dynamically-
bound feature calls.

x ?= retrieved
if x = Void then

“We did not get what we expected”
else

“Proceed with normal computation, which will typically involve
calls of the form x.some_feature”

end

local
s: SAVINGS_ACCOUNT

do
from account_list.start until account_list.after loop

s ?= acc_list.item
-- item from LIST yields the element at
-- cursor position

if s /= Void and then s.interest_rate > Result then
-- Using and then (rather than and) guarantees
-- that s.interest_rate is not evaluated
-- if s = Void is true.

Result := s.interest_rate
end
account_list.forth

end
end

§9 INHERITANCE 79
Covariance and anchored declarations

The final property of Eiffel inheritance involves the rules for adapting not only the

implementation of inherited features (through redeclaration of either kind,

redeclaration and redefinition, as seen so far) and their contracts (through the Assertion

Redeclaration rule), but also their types. More general than type is the notion of a

feature’ssignature, defined by the number of its arguments, their types, the indication

of whether it has a result (that is to say, is a function or attribute rather than a procedure)

and, if so, the type of the result.

In many cases the signature of a redeclared feature remains the same as the

original’s. But in some cases you may want to adapt it to the new class. Assume for

example that classACCOUNT has features

We introduce an heirBUSINESS_ACCOUNT of ACCOUNT to represent special

business accounts, corresponding to classBUSINESS inheriting fromHOLDER:

owner: HOLDER
set_owner (h: HOLDER) is

-- Make h the account owner.
require

not_void: h /= Void
do

owner := h
end

ACCOUNT HOLDER

BUSINESSBUSINESS_
ACCOUNT

…

Inheritance

Client

…

Parallel
hierarchies

AN EIFFEL TUTORIAL §980
Clearly, we must redefineowner in classBUSINESS_ACCOUNT to yield a result of
typeBUSINESS; the same signature redefinition must be applied to the argument of
set_owner. This case is typical of the general scheme of signature redefinition: in a
descendant, you may need to redefine both results and arguments to types conforming
to the originals. This is reflected by a language rule:

The term “covariance” reflects the property that all types — those of arguments and
those of results — vary together in the same direction as the inheritance structure.

If a feature such asset_owner has to be redefined for more than its signature —
to update its implementation or assertions — the signature redefinition will be explicit.
For exampleset_owner could do more for business owners than it does for ordinary
owners. Then the redefinition will be of the form

In other cases, however, the body will be exactly the same as in the precursor. Then
explicit redefinition would be tedious, implying much text duplication. The mechanism
of anchored redeclaration solves this problem. The original declaration of
set_owner in ACCOUNT should be of the form

A like anchor type, known as an anchored type, may appear in any context in which
anchor has a well-defined type;anchor can be an attribute or function of the enclosing
class, or an argument of the enclosing routine. Then, assumingT is the type ofanchor,
the typelike anchor means the following:

Covariance rule
In a feature redeclaration, both the result type if the feature is a query
(attribute or function) and the type of any argument if it is a routine
(procedure or function) must conform to the original type as declared in the
precursor version.

set_owner (b: BUSINESS) is
-- Make b the account owner.

… New routine body …
end

set_owner (h: like Current) is
-- Make h the account owner.
-- The rest as before:

require
not_void: h /= Void

do
owner := h

end

§9 INHERITANCE 81
• In the class in which it appears,like anchor means the same asT. Ffor example,
in set_owner above, the declaration ofh has the same effect as ifh had been
declared of typeHOLDER, the type of the anchorowner in classACCOUNT.

• The difference comes in proper descendants: if a type redefinition changes the type
of anchor, any entity declaredlike anchor will be considered to have been
redefined too.

This means that anchored declaration are a form of of implicit covariant redeclaration.

In the example, classBUSINESS_ACCOUNT only needs to redefine the type of
owner (to BUSINESS). It doesn’t have to redefineset_owner except if it needs to
change its implementation or assertions.

It is possible to useCurrent as anchor; the declarationlike Current denotes a type
based on the current class (with the same generic parameters if any). This is in fact a
common case; we saw in“Structuralpropertyclasses”,page62, that it applies in class
COMPARABLE to features such as

since we only want to compare two comparable elements of compatible types — but
not, for example, integer and strings, even if both types conform toCOMPARABLE.
(A “balancing rule” makes it possible, however, to mix the various arithmetic types,
consistently with mathematical traditions, in arithmetic expressions such as3 + 45.82
or boolean expressions such as3 < 45.82.)

Similarly, classANY declares procedurecopy as

with the argument anchored to the current object. Functionclone, for its part, has
signatureclone (other: ANY): like other, with both argument and result anchored to
the argument, so that for anyx the type ofclone (x) is the same as the type ofx.

A final, more application-oriented example of anchoring toCurrent is the feature
merge posited in an earlier example (page33) with the signature
merge (other: ACCOUNT). By using insteadmerge (other: like Current) we can
ensure that in any descendant class —BUSINESS_ACCOUNT,
SAVINGS_ACCOUNT, MINOR_ACCOUNT… — an account will only be
mergeable with another of a compatible type.

Covariance makes static type checking more delicate; mechanisms of “system
validity” and “catcalls” address the problem, discussed in detail in the bookObject-
Oriented Software Construction(see the bibliography).

.

infix "<" (other: like Current): BOOLEAN is …

copy (other: like Current) is …

http://eiffel.com/doc/oosc

AN EIFFEL TUTORIAL §1082
10 OTHER MECHANISMS

We now examine a few important mechanisms that complement the preceding picture:
shared objects; constants; instructions; and lexical conventions.

Once routines and shared objects

The Eiffel’s method obsession with extendibility, reusability and maintainability
yields, as has been seen, modular and decentralized architectures, where inter-module
coupling is limited to the strictly necessary, interfaces are clearly delimited, and all the
temptations to introduce obscure dependencies, in particular global variables, have
been removed. There is a need, however, to let various components of a system access
common objects, without requiring their routines to pass these objects around as
arguments (which would only be slightly better than global variables). For example
various classes may need to perform output to a common “console window”,
represented by a shared object.

Eiffel addresses this need through an original mechanism that also takes care of
another important issue, poorly addressed by many design and programming
approaches: initialization. The idea is simple: if instead ofdo the implementation of an
effective routine starts with the keywordonce , it will only be executed the first time
the routine is called during a system execution (or, in a multithreaded environment, the
first time in each thread), regardless of what the caller was. Subsequent calls from the
same caller or others will have no effect; if the routine is a function, it will always return
the result computed by the first call — object if an expanded type, reference otherwise.

In the case of procedures, this provides a convenient initialization mechanism. A
delicate problem in the absence of aonce mechanism is how to provide the users of a
library with a set of routines which they can call in any order, but which all need, to
function properly, the guarantee that some context had been properly set up. Asking the
library clients to precede the first call with a call to an initialization proceduresetup is
not only user-unfriendly but silly: in a well-engineered system we will want to check
proper set-up in every of the routines, and report an error if necessary; but then if we
were able to detect improper set-up we might as well shut up and set up ourselves (by
callingsetup). This is not easy, however, since the object on which we callsetup must
itself be properly initialized, so we are only pushing the problem further. Makingsetup
aonce procedure solves it: we can simply include a call

at the beginning of each affected routine; the first one to come in will perform the
needed initializations; subsequent calls will have, as desired, no effect.

setup

§10 OTHER MECHANISMS 83
Once functions will give us shared objects. A common scheme is

Whatever client first calls this function will create the appropriate window and return a
reference to it. Subsequent calls, from anywhere in the system, will return that same
reference. The simplest way to make this function available to a set of classes is to
include it in a classSHARED_STRUCTURES which the classes needing a set of
related shared objects will simply inherit.

For the classes using it,console, although a function, looks very much as if it
were an attribute — only one referring to a shared object.

The “Hello World” system at the beginning of this discussion (section4) used an
output instruction of the formio.put_string ("Some string"). This is another example
of the general scheme illustrated byconsole. Featureio, declared inANY and hence
usable by all classes, is a once function that returns an object of type
STANDARD_FILES (another Kernel Library class) providing access to basic input
and output features, one of which is procedureput_string. Because basic input and
output must all work on the same files,io should clearly be a once function, shared by
all classes that need these mechanisms.

Constant and unique attributes

The attributes studied earlier were variable: each represents a field present in each
instance of the class and changeable by its routines.

It is also possible to declare constant attributes, as in

These will have the same value for every instance and hence do not need to occupy any
space in objects at execution time. (In other approaches similar needs would be
addressed by symbolic constants, as in Pascal or Ada, or macros, as in C.)

What comes after theis is a manifest constant: a self-denoting value of the
appropriate type. Manifest constants are available for integers, reals (also used for
doubles), booleans (True andFalse), characters (in single quotes, as'A', with special
characters expressed using a percent sign as in'%N' for new line,'%B' for backspace
and'%U' for null).

console: WINDOW is
-- Shared console window

once
create Result.make (…)

end

Solar_system_planet_count: INTEGER is 9

AN EIFFEL TUTORIAL §1084
For integer constants, it is also possible to avoid specifying the values. A
declaration of the form

introducesa, b, c, … n as constant integer attributes, whose value are assigned by the
Eiffel compiler rather than explicitly by the programmer. The values are different for
all unique attributes in a system; they are all positive, and, in a single declaration such
as the above, guaranteed to be consecutive (so that you may use an invariant property
of the formcode >= a and code <= n to express thatcode should be one of the
values). This mechanism replaces the “enumerated types” found in many anguages,
without suffering from the same problems. (Enumerated types have an ill-defined place
in the type system; and it is not clear what operations are permitted.)

You may use Unique values in conjunction with theinspect multi-branch
instruction studied in the next section. They are only appropriate for codes that can take
on a fixed number of well-defined values — not as a way to program operations with
many variants, a need better addressed by the object-oriented technique studied earlier
and relying on inheritance, polymorphism, redeclaration and dynamic binding.

Manifest constants are also available for strings, using double quotes as in

with special characters again using the% codes. It is also possible to declare manifest
arrays using double angle brackets:

which is an expression of typeARRAY [INTEGER]. Manifest arrays and strings are
not atomic, but denote instances of the Kernel Library classesSTRING andARRAY,
as can be produced by once functions.

Instructions

Eiffel has a remarkably small set of instructions. The basic computational instructions
have been seen: creation, assignment, assignment attempt, procedure call,retry . They
are complemented by control structures: conditional, multi-branch, loop, as well as
debug andcheck .

A conditional instruction has the formif … then … elseif … then … else … end .
Theelseif … then … part (of which there may be more than one) and theelse …
part are optional. Afterif andelseif comes a boolean expression; afterthen , elseif
andelse come zero or more instructions.

a, b, c, … n: INTEGER is unique

User_friendly_error_message: INTEGER is "Go get a life!"

<<1, 2, 3, 5, 7, 11, 13, 17, 19>>

§10 OTHER MECHANISMS 85
A multi-branch instruction has the form

where theelse inst0 part is optional,exp is a character or integer expression,v1, v2,
… are constant values of the same type asexp, all different, andinst0, inst1, inst2, …
are sequences of zero or more instructions. In the integer case, it is often convenient to
useunique values (“Constant and unique attributes”, page 83) for thevi.

The effect of such a multi-branch instruction, if the value ofexp is one of thevi,
is to execute the correspondinginsti. If none of thevi matches, the instruction executes
inst0, unless there is noelse part, in which case it triggers an exception.

Raising an exception is the proper behavior, since the absence of anelse indicates that
the author asserts that one of the values will match. If you want an instruction that does
nothing in this case, rather than cause an exception, use anelse part with an empty
inst0. In contrast,if c then inst end with noelse part does nothing in the absence of
anelse part, since in this case there is no implied claim thatc must hold.)

The loop construct has the form

inspect
exp

when v1 then
inst1

when v2 then
inst2

…
else

inst0
end

from
initialization

until
exit

invariant
inv

variant
var

loop
body

end

AN EIFFEL TUTORIAL §1086
where theinvariant inv and variant var parts are optional, the others required.
initialization andbody are sequences of zero or more instructions;exit and inv are
boolean expressions (more precisely,inv is an assertion);var is an integer expression.

The effect is to executeinitialization, then, zero or more times untilexit is
satisfied, to executebody. (If after initialization the value ofexit is already true,body
will not be executed at all.) Note that the syntax of loops always includes an
initialization, as most loops require some preparation. If not, just leaveinitialization
empty, while including thefrom since it is a required component.

The assertioninv, if present, expresses aloop invariant (not to be confused with
class invariants). For the loop to be correct,initialization must ensureinv, and then
every iteration ofbody executed whenexit is false must preserve the invariant; so the
effect of the loop is to yield a state in which bothinv andexit are true. The loop must
terminate after a finite number of iterations, of course; this can be guaranteed by using
a loop variant var. It must be an integer expression whose value is non-negative after
execution ofinitialization, and decreased by at least one, while remain non-negative,
by any execution ofbody whenexit is false; since a non-negative integer cannot be
decreased forever, this ensures termination. The assertion monitoring mode, if turned
on at the highest level, will check these properties of the invariant and variant after
initialization and after each loop iteration, triggering an exception if the invariant does
not hold or the variant is negative or does not decrease.

An occasionally useful instruction isdebug (Debug_key, …) instructions end
where instructions is a sequence of zero or more instructions and the part in
parentheses is optional, containing if present one or more strings, called debug keys.
The EiffelStudio compiler lets you specify the correspondingdebug compilation
option:yes , no , or an explicit debug key. Theinstructions will be executed if and only
if the corresponding option is on. The obvious use is for instructions that should be part
of the system but executed only in some circumstances, for example to provide extra
debugging information.

The final instruction is connected with Design by Contract. The instruction
check Assertions end , whereAssertions is a sequence of zero or more assertions,
will have no effect unless assertion monitoring is turned on at theCheck level or
higher. If so it will evaluate all the assertions listed, having no further effect if they are
all satisfied; if any one of them does not hold, the instruction will trigger an exception.

§10 OTHER MECHANISMS 87
This instruction serves to state properties that are expected to be satisfied at some
stages of the computation — other than the specific stages, such as routine entry and
exit, already covered by the other assertion mechanisms such as preconditions,
postconditions and invariants. A recommended use ofcheck involves calling a routine
with a precondition, where the call, for good reason, does not explicitly test for the
precondition. Consider a routine of the form

Because of the call tosome_feature, the routine will only work if its precondition is
satisfied on entry. To guarantee this precondition, the caller may protect it by the
corresponding test, as in

but this is not the only possible scheme; for example if ancreate x appears shortly
before the call we knowx is not void and do not need the protection. It is a good idea
in such cases to use acheck instruction to document this property, if only to make sure
that a reader of the code will realize that the omission of an explicit test (justified or
not) was not a mistake. This is particularly appropriate if the justification for not testing
the precondition is less obvious. For examplex could have been obtained, somewhere
else in the algorithm, asclone (y) for somey that you know is not void. You should
document this knowledge by writing the call as

Note the recommended convention: extra indentation of thecheck part to separate it
from the algorithm proper; and inclusion of a comment listing the rationale behind the
developer’s decision not to check explicitly for the precondition.

r (ref: SOME_REFERENCE_TYPE) is
require

not_void: r /= Void
do

r.some_feature
…

end

if x /= Void then a.r (x) end

check
x_not_void: x /= Void end

-- Because x was obtained as a clone of y,
-- and y is not void because [etc.]

end
a.r (x)

AN EIFFEL TUTORIAL §1088
In production mode with assertion monitoring turned off, this instruction will have no
effect. But it will be precious for a maintainer of the software who is trying to figure
out what it does, and in the process to reconstruct the original developer’s reasoning.
(The maintainer might of course be the same person as the developer, six months later.)
And if the rationale is wrong somewhere, turning assertion checking on will
immediately uncover the bug.

Obsolete features and classes

One of the conditions for producing truly great reusable software is to recognize that
although you should try to get everything right the first time around you won’t always
succeed. But if “good enough” may be good enough for application software, it’s not
good enough, in the long term, for reusable software. The aim is to get ever closer to
the asymptote of perfection. If you find a better way, you must implement it. The
activity of generalization, discussed as part of the lifecycle, doesn’t stop at the first
release of a reusable library.

This raises the issue of backward compability: how to move forward with a better
design, without compromising existing applications that used the previous version?

The notion of obsolete class and feature helps address this issue. By declaring a
feature asobsolete , using the syntax

you state that you are now advising against using it, and suggest a replacement through
the message that follows the keywordobsolete , a mere string. The obsolete feature is
still there, however; using it will cause no other harm than a warning message when
someone compiles a system that includes a call to it. Indeed, you don’t want to hold a
gun to your client authors’ forehead (“Upgrade now or die!’); but you do want to let
them know that there is a new version and that they should upgrade at their leisure.

Besides routines, you may also mark classes as obsolete.

The example above is a historical one, involving an early change of interface for
the EiffelBase library classARRAY; the change affected both the feature’s name, with
a new name ensuring better consistency with other classes, and the order of arguments,
again for consistency. It shows the recommended style for usingobsolete :

enter (i: INTEGER; x: G) is
obsolete

"Use ‘put (x, i)’ instead"
require

…
do

put (x, i)
end

§10 OTHER MECHANISMS 89
• In the message following the keyword, explain the recommended replacement.
This message will be part of the warning produced by the compiler for a system
that includes the obsolete element.

• In the body of the routine, it is usually appropriate, as here, to replace the original
implementation by a call to the new version. This may imply a small performance
overhead, but simplifies maintenance and avoids errors.

It is good discipline not to let obsolete elements linger around for too long. The next
major new release, after a suitable grace period, should remove them.

The design flexibility afforded by theobsolete keyword is critical to ensure the
harmonious long-term development of ambitious reusable software.

Creation variants

The basic forms of creation instruction, and the one most commonly used, are the two
illustrated earlier (“Creating and initializing objects”, page 20):

the first one if the corresponding class has acreate clause, the second one if not. In
either form you may include a type name in braces, as in

which is valid only if the type listed, hereSAVINGS_ACCOUNT, conforms to the
type ofx, assumed here to beACCOUNT. This avoids introducing a local entity, as in

and has exactly the same effect. Another variant is thecreation expression, which
always lists the type, but returns a value instead of being an instruction. It is useful in
the followingcontext:

which you may again view as an abbreviation for a more verbose form that would need
a local entity, using a creation instruction:

create x.make (2000)
create x

create {SAVINGS_ACCOUNT} x.make (2000)

local
sx: SAVINGS_ACCOUNT

do
create xs.make (2000)
x := xs

…

some_routine (create {ACCOUNT}.make (2000))

AN EIFFEL TUTORIAL §1090
Unlike creation instructions, creation expressions must always list the type explicitly,
{ACCOUNT} in the example. They are useful in the case shown: creating an object that
only serves as an argument to be passed to a routine. If you need to retain access to the
object through an entity, the instructioncreate x… is the appropriate construct.

The creation mechanism gets an extra degree of flexibility through the notion of
default_create. The simplest form of creation instruction,create x without an
explicit creation procedure, is actually an abbreviation forcreate x.default_create,
wheredefault_create is a procedure defined in classANY to do nothing. By redefining
default_create in one of your classes, you can ensure thatcreate x will take care of
non-default initialization (and ensure the invariant if needed). When a class has no
create clause, it’s considered to have one that lists onlydefault_create. If you want
to allow create x as well as the use of some explicit creation procedures, simply list
default_create along with these procedures in thecreate clause. To disallow creation
altogether, include an emptycreate clause, although this technique is seldom needed
since most non-creatable classes are deferred, and one can’t instantiate a deferred class.

One final twistis the mechanism for creating instances of formal generic
parameters. Forx of typeG in a class C[G], it wouldn’t be safe to allowcreate x, since
G stands for many possible types, all of which may have their own creation procedures.
To allow such creation instructions, we rely on constrained genericity. You may declare
a class as

to makeG constrained byT, as we learned before, and specify that any actual generic
parameter must havecp among its creation procedures. Then it’s permitted to use
create x.cp, with arguments if required bycp, since it is guaranteed to be safe. The
mechanism is very general since you may useANY for T anddefault_create for cp.
The only requirement oncp is that it must be aprocedureof T, not necessarily a
creationprocedure; this permits using the mechanism even ifT is deferred, a common
occurrence. It’s only descendants ofT that must makecp a creation procedure, by
listing it in thecreate clause, if they want to serve as actual generic parameters forC.

local
x: ACCOUNT

do
create x.make (2000)
some_routine (x)

…

[G –> T create cp end]

§10 OTHER MECHANISMS 91
Tuple types

The study of genericity described arrays. Another common kind of container objects
bears some resemblance to arrays: sequences, or “tuples”, of elements of specified
types. The difference is that all elements of an array were of the same type, or a
conforming one, whereas for tuples you will specify the types we want for each relevant
element. A typical tuple type is of the form

denoting a tuple of least three elements, such that the type of the first conforms toX,
the second toY, and the third toZ.

You may list any number of types in brackets, including none at all:TUPLE, with
no types in brackets, denotes tuples of arbitrary length.

The syntax, with brackets, is intentionally reminiscent of generic classes, butTUPLE
is a reserved word, not the name of a class; making it a class would not work since a
generic class has a fixed number of generic parameters. You may indeed useTUPLE
to obtain the effect of a generic class with a variable number of parameters.

To write the tuples themselves — the sequences of elements, instances of a tuple type
— you will also use square brackets; for example

with x1 of typeX and so on is a tuple of typeTUPLE [X, Y, Z].

The definition of tuple types states thatTUPLE [X1, … , Xn] denotes sequences
of at leastn elements, of which the firstn have types respectively conforming toX1,
… , Xn. Such a sequence may have more thann elements.

Features available on tuple types includecount: INTEGER, yielding the number
of elements in a tuple,item (i: INTEGER): ANY which returns thei-th element, and
put which replaces an element.

Tuples are appropriate when these are the only operations you need, that is to say,
you are using sequences with no further structure or properties. Tuples give you
“anonymous classes” with predefined featurescount, item andput. A typical example
is a general-purpose output procedure that takes an arbitrary sequence of values, of
arbitrary types, and prints them. It may simply take an argument of typeTUPLE, so
that clients can call it under the form

As soon as you need a type with more specific features, you should define a class.

TUPLE [X, Y, Z]

[x1, y1, z1]

write ([your_integer, your_real, your_account])

AN EIFFEL TUTORIAL §1192
11 AGENTS

Our last mechanism, agents, adds one final level of expressive power to the framework
describe so far. Agents apply object-oriented concepts to the modeling ofoperations.

Objects for operations

Operations are not objects; in fact, object technology starts from the decision to
separate these two aspects, and to choose object types, rather than the operations, as the
basis for modular organization of a system, attaching each operation to the resulting
modules — the classes.

In a number of applications, however, we may need objects thatrepresent
operations, so that we can include them in object structures that some other piece of the
software will later traverse to uncover the operations and, usually, execute them. Such
“operation wrapper” objects, called agents, are useful in a number of application areas
such as:

• GUI (Graphical User Interface) programming, where we may associate an agent
with a certain event of the interface, such as a mouse click at a certain place on the
screen, to prescribe that if the event occurs — a user clicks there — it must cause
execution of the agent’s associated operation.

• Iteration on data structures, where we may define a general-purpose routine that
can apply an arbitrary operation to all the elements of a structure such as a list; to
specify a particular operation to iterate, we will pass to the iteration mechanism an
agent representing that operation.

• Numerical computation, where we may define a routine that computes the integral
of any applicable function on any applicable interval; to represent that function
and pass its representation to the integration routine, we will use an agent.

Operations in Eiffel are expressed as routines, and indeed every agent will have an
associated routine. Remember, however, that the fundamental distinction between
objects and operations remains: an agent is an object, and it is not a routine; it
representsa routine. As further evidence that this is a proper data abstraction, note that
the procedurecall, available on all agents to call the associated routine, is only one of
the features of agents. Other features may denote properties such as the class to which
the routine belongs, its precondition and postcondition, the result of the last call for a
function, the number of arguments.

Building an agent

In the simplest form, also one of the most common, you obtain an agent just by writing

agent r

§11 AGENTS 93
wherer is the name of a routine of the enclosing class. This is an expression, which you
may assign to a writable entity, or pass as argument to a routine. Here for example is
how you will specify event handling in the style of the EiffelVision 2 GUI library:

This adds to the end ofmy_icon.click_actions — the list of agents associated with the
“click” event for my_icon, denoting an icon in the application’s user interface — an
agent representingyour_routine. Then when a user clicks on the associated icon at
execution, the EiffelVision 2 mechanisms will call the procedurecall on every agent of
the list, which for this agent will executeyour_routine. This is a simple way to
associate elements of your application, more precisely its “business model” (the
processing that you have defined, directly connected to the application’s business
domain), with elements of its GUI.

Similarly although in a completely different area, you may request the integration
of a functionyour_function over the interval0 ..1through a call such as

In the third example area cited above, you may call an iterator of EiffelBase through

with your_list of a type such asLIST [YOUR_TYPE]. This will applyyour_proc to
every element of the list in turn.

The agent mechanism is type-checked like the rest of Eiffel; so the last example is
valid if and only ifyour_proc is a procedure with one argument of typeYOUR_TYPE.

Operations on agents

An agentagent r built from a procedurer is of type PROCEDURE [T, ARGS]
whereT represents the class to whichr belongs andARGS the type of its arguments. If
r is a function of result typeRES, the type isFUNCTION [T, ARGS, RES]. Classes
PROCEDURE and FUNCTION are from the Kernel Library of EiffelBase, both
inheriting fromROUTINE [T, ARGS].

Among the features ofROUTINE and its descendants the most important arecall,
already noted, which calls the associated routine, anditem, appearing only in
FUNCTION and yielding the result of the associated function, which it obtains by
callingcall.

your_icon.click_actions.extend (agent your_routine)

your_integrator.integral (agent your_function, 0, 1)

your_list.do_all (agent your_proc)

AN EIFFEL TUTORIAL §1194
As an example of using these mechanisms, here is how the functionintegral could
look like in ourINTEGRATOR example class. The details of the integration algorithm
(straightforward, and making no claims to numerical sophistication) do not matter, but
you see, in the highlighted line, the place were we evaluate the mathematical function
associated withf, by callingitem on f:

Function integral takes three arguments: the agentf representing the function to be
integrated, and the two interval bounds. When we need to evaluate that function for the
valuex, in the line

we don’t directly passx to item; instead, we pass a one-element tuple[x], using the
syntax for manifest tuples introduced in“Tupletypes”, page91. You will always use
tuples for the argument tocall anditem, because these features must be applicable to
any routine, and so cannot rely on a fixed number of arguments. Instead they take a
single tuple intended to contain all the arguments. This property is reflected in the type
of the second actual generic parameter tof, corresponding toARGS (the formal generic
parameter ofFUNCTION): here it’sTUPLE [REAL] to require an argument such as
[x], wherex is of typeREAL.

integral
(f: FUNCTION [ANY, TUPLE [REAL], REAL];
low, high: REAL): REAL is

-- Integral of f over the interval [low, high]
require

meaningful_interval: low <= high
local

x: REAL
do

from
x := low

invariant
x >= low ; x <= high + step
-- Result approximates the integral over
-- the interval [low, low.max (x – step)]

until x > high loop
Result := Result + step ∗
x := x + step

end
end

Result := Result + step ∗

f.item ([x])

f.item ([x])

§11 AGENTS 95
Similarly, consider the agent that the call seen above:

added to an EiffelVision list. When the EiffelVision mechanism detects a mouse click
event, it will apply to each elementitem of the list of agents,your_icon.click_actions,
an instruction such as

wherex andy are the coordinates of the mouse clicking position. Ifitem denotes the
list elementagent your_routine, inserted by the above call toextend, the effect will
be the same as that of calling

assuming thatyour_routine indeed takes arguments of the appropriate type, here
INTEGER representing a coordinate in pixels. (Otherwise type checking would have
rejected the call toextend.)

Open and closed arguments

In the examples so far, execution of the agent’s associated routine, throughitem or call,
passed exactly the arguments that a direct call to the routine would expect. You can
have more flexibility. In particular, you may build an agent from a routine with more
arguments than expected in the final call, and you may set the values of some arguments
at the time you define the agent.

Assume for example that a cartographical application lets a user record the
location of a city by clicking on the corresponding position on the map. The application
may do this through a procedure

Then you can associate it with the GUI through a call such as

your_icon.click_actions.extend (agent your_routine)

item.call ([x, y])

your_routine (x, y)

record_city (cn: STRING; x, y: INTEGER; pop: INTEGER)
-- Record that the city of name name is at coordinates
-- x and y with population pop.

map.click_actions.extend (agent record_city (name, population, ?, ?))

AN EIFFEL TUTORIAL §1196
assuming that the information on thename and thepopulation has already been
determined. What the agent denotes is the same asagent your_routine as given
before, whereyour_routine would be a fictitious two-argument routine obtained from
record_city — a four-argument routine — by setting the first two arguments once and
for all to the values given,name andpopulation.

In the agentagent record_city (name, population, ?, ?), we say that these first
two arguments, with their set values, areclosed; the last two areopen. The question
mark syntax introduced by this example may only appear in agent expressions; it
denotes open arguments. This means, by the way, that you may view the basic form
used in the preceding examples,agent your_routine, as an abbreviation — assuming
your_routine has two arguments — foragent your_routine (?, ?). It is indeed
permitted, to define an agent with all arguments open, to omit the argument list
altogether; no ambiguity may result.

For type checking, agent record_city (name, population, ?, ?) and
agent your_routine are acceptable in exactly the same situations, since both represent
routines with two arguments. The type of both is

where the tuple type specifies the open operands.

A completely closed agent, such asagent your_routine (25, 32) or
agent record_city (name, population, 25, 32), has the typeTUPLE, with no
parameters; you will call it withcall ([]), using an empty tuple as argument.

The freedom to start from a routine with an arbitrary number of arguments, and
choose which ones you want to close and which ones to leave open, provides a good
part of the attraction of the agent mechanism. It means in particular that in GUI
applications you can limit to the strict minimum the “glue” code (sometimes called the
controller in the so-called MVC, Model-View Controller, scheme of GUI design)
between the user interface and “business model” parts of a system. A routine such as
record_city is a typical example of an element of the business model, uninfluenced —
as it should be — by considerations of user interface design. Yet by passing it in the
form of an agent with partially open and partially closed arguments, you may be able
to use itdirectly in the GUI, as shown above, without any “controller” code.

As another example of the mechanism’s versatility, we saw above an integral
function that could integrate a function of one variable over an interval, as in

PROCEDURE [ANY, TUPLE [INTEGER, INTEGER]]

your_integrator.integral (agent your_function, 0, 1)

§11 AGENTS 97
Now assume thatfunction3 takes three arguments. To integratefunction3 with two
arguments fixed, you don’t need a newintegral function; just use the sameintegral as
before, judiciously selecting what to close and what to leave open:

Open targets

All the agent examples seen so far were based on routines of the enclosing class. This
is not required. Feature calls, as you remember, were either unqualified, as inf (x, y),
or qualified, as ina.g (x, y). Agents, too, have a qualified variant as in

which is closed on its targeta and open on the arguments. Variants such as
agent a.g (x, y), all closed, andagent a.g (?, y), open on one argument, are all valid.

You may also want to make thetargetopen. The question mark syntax could not
work here, since it wouldn’t tell us the class to which featureg belongs, known in the
preceding examples from the type ofa. As in creation expressions, we must list the type
explicitly; the convention is the same: write the types in braces, as in

The first two of these examples are open on the target and both operands; they mean the
same. The third is closed on one argument, open on the other and on the target.

These possibilities give even more flexibility to the mechanism because they mean
that an operation that needs agents with certain arguments open doesn’t care whether
they come from an argument or an operand of the original routine. This is particularly
useful for iterators and means that if you have two lists

you may write both

even though the two procedures used in the agents have quite different forms. We are
assuming here that the first one, in classACCOUNT, is something like

your_integrator.integral (agent function3 (3.5, ?, 6.0), 0, 1)

agent a.g

agent {SOME_TYPE}.g
agent {SOME_TYPE}.g (?, ?)
agent {SOME_TYPE}.g (?, y)

your_account_list: LIST [ACCOUNT]
your_integer_list: LIST [INTEGER]

your_acccount_list.do_all (agent deposit_one_grand)
your_integer_list.do_all (agent add_to_n)

AN EIFFEL TUTORIAL §1298
so that it doesn’t take an argument: it is normally called on its target, as in
my_account.deposit_one_grand. In contrast, the other routine has an argument:

wheretotal is an integer attribute of the enclosing class. Without the versatility of playing
with open and closed arguments for both the original arguments and target, you would
have to write separate iteration mechanisms for these two cases. Here you can use a single
iteration routine ofLIST and similar classes of EiffelBase,do_all, for both purposes:

• Depositing money on every account in a list of accounts.

• Adding all the integers in a list of integers.

Agents provide a welcome complement to the other mechanisms of Eiffel. They do not
conflict with them but, when appropriate — as in the examples sketched in this section
— provide clear and expressive programming schemes, superior to the alternatives.

12 LEXICAL CONVENTIONS AND STYLE RULES

Eiffel software texts are free-format: distribution into lines is not semantically
significant, and any number of successive space and line-return characters is equivalent
to just one space. The style rules suggest indenting software texts as illustrated by the
examples in this chapter.

Successive declarations or instructions may be separated by semicolons. Eiffel’s
syntax has been so designed, however, that (except in rare cases)the semicolon is
optional. Omitting semicolons for elements appearing on separate lines lightens text
and is the recommended practice since semicolons, as used by most programming
languages, just obscure the text by distracting attention from the actual contents.Douse
semicolons if you occasionally include successive elements on a single line.

63 names — all unabbreviated single English words, except forelseif which is
made of two words — are reserved, meaning that you cannot use them to declare new
entities. Here is the list:

Since this tutorial has covered all the essential mechanisms, you may ignore the
keywords not encountered; they are reserved for future use.

deposit_one_grand is
-- Add one thousand dollars to balance of account.

do balance := balance + 1000 end

add_to_n (x: INTEGER) is
-- Add x to the value of total.

do total := total + x end

§12 LEXICAL CONVENTIONS AND STYLE RULES 99
Most of the reserved words are keywords, serving only as syntactic markers, and
written in boldface in typeset texts such as the present one:class , feature , inherit .
The others, such asCurrent, directly carry a semantic denotation; they start with an
upper-case letter and are typeset in boldface.

These conventions about letter case are only style rules. Eiffel is case-insensitive,
since it is foolish to assume that two identifiers denote two different things just on the
basis of a letter written in lower or upper case. The obvious exception is manifest
character constants (appearing in single quotes, such as'A') and manifest character
strings (appearing in double quotes, such as"lower and UPPER").

The style rules, however, are precise, and any serious Eiffel project will enforce
them; the tools of EiffelStudio also observe them in the texts they output (although they
will not mess up with your source text unless you ask them to reformat it). Here are the
conventions, illustrated by the examples of this tutorial:

• Class names in upper case, asACCOUNT.

• Non-constant feature names and keywords in lower case, asbalance andclass .

• Constant features and predefined entities and expressions with an initial upper
case, asAvogadro andResult.

In typeset documents including Eiffel texts, the standard for font styles is also precise.
You should useboldface for keywords anditalics for all other Eiffel elements.
Comments, however, are typeset inroman. This lets a software element, such as an
identifier, stand out clearly in what is otherwise a comment text expressed in English
or another human langage, as in the earlier example

which makes clear thatsum is a software element, not the English word.

agent alias all and as assign check
class convert create Current debug deferred do
else elseif end ensure e xpanded e xport external
False feature from frozen if implies indexing
infix inherit inspect invariant is like local
loop not obsolete old once or prefix
Precursor pure redefine reference rename require rescue
Result retry separate then True TUPLE undefine

-- Add sum to account.

AN EIFFEL TUTORIAL §13100
There is also an Eiffel style to the choice of identifiers. For features, stay away
from abbreviations and use full words. In multi-word identifiers, separate the
constituents by underscores, as inLINKED_LIST and set_owner. The competing
style of no separation but mid-identifier upper-case, as inlinkedList or setOwner, is
less readable and not in line with standard Eiffel practices.

Features of reusable classes should use consistent names. A set of standard names
— put for the basic command to add or replace an element,count for the query that
returns the number of element in a structure,item to access an element — is part of the
style rules, and used systematically in EiffelBase. Use them in your classes too.

For local entities and formal arguments of routines, it is all right to use abbreviated
names, since these identifiers only have a local scope, and choosing a loud name would
give them too much pretense, leading to potential conflicts with features.

The complete set of style rules applied by ISE is available on the web in both
HTML andPDFforms. These rules are an integral part of the Eiffel method; in quality
software, there is no such thing as a detail. Applying them systematically promotes
consistency between projects in the Eiffel world, enhances reusability, and facilitates
everyone’s work.

13 TO LEARN MORE

Beyond this introduction, you will find the following two books essential to a mastery
of the method and language:

• Object-OrientedSoftware Construction, Bertrand Meyer, Prentice Hall, 2nd
edition 1997. (Make sure to get the second edition.) About object technology in
general; presents the method behind Eiffel.

• Eiffel: TheLanguage, Bertrand Meyer, Prentice Hall, 1992. Language manual and
reference.

Numerous other books are available on Eiffel and Eiffel-related topics. See an extensive
list at http://www.eiffel.com/doc/documentation.html, from which you can order most
of the titles listed. They include university textbooks, general introductions,
presentations of Eiffel projects, descriptions of libraries and other applications, books
on BON and object-oriented methodology.

http://eiffel.com/doc/oosc/
http://eiffel.com/doc/documentation.html#etl
http://www.eiffel.com/doc/documentation.html
http://www.eiffel.com/manuals/language/style
http://www.eiffel.com/manuals/language/style/style.pdf

	An Eiffel Tutorial
	Manual identification
	An Eiffel tutorial
	1 OVERVIEW
	2 GENERAL PROPERTIES
	3 THE SOFTWARE PROCESS IN EIFFEL
	Clusters and the cluster model
	Seamlessness and reversibility
	Generalization and reuse
	Constant availability
	Compilation technology
	Quality and functionality

	4 HELLO WORLD
	5 THE STATIC PICTURE: SYSTEM ORGANIZATION
	Systems
	Classes
	Class relations
	The global inheritance structure
	Clusters
	External software

	6 THE DYNAMIC STRUCTURE: EXECUTION MODEL
	Objects, fields, values and references
	Features
	A simple class
	Creating and initializing objects
	Entities
	Calls
	Infix and prefix notation
	Type declaration
	Type categories
	Basic operations
	Deep operations and persistence
	Memory management
	Information hiding and the call rule
	Execution scenario
	Abstraction

	7 GENERICITY AND ARRAYS
	Making a class generic
	Arrays
	Generic derivation

	8 DESIGN BY CONTRACTTM, ASSERTIONS, EXCEPTIONS
	Design by Contract basics
	Expressing assertions
	Using contracts for built-in reliability
	Run-time assertion monitoring
	The contract form of a class
	Exception handling
	Other applications of Design by Contract

	9 INHERITANCE
	Basic inheritance structure
	Redefinition
	Polymorphism
	Dynamic binding
	Deferred features and classes
	Applications of deferred classes
	Structural property classes
	Multiple inheritance and renaming
	Inheritance and contracts
	Join and uneffecting
	Changing the export status
	Flat and Flat-Contract Forms
	Repeated inheritance and selection
	Constrained genericity
	Assignment attempt
	Covariance and anchored declarations

	10 OTHER MECHANISMS
	Once routines and shared objects
	Constant and unique attributes
	Instructions
	Obsolete features and classes
	Creation variants
	Tuple types

	11 AGENTS
	Objects for operations
	Building an agent
	Operations on agents
	Open and closed arguments
	Open targets

	12 LEXICAL CONVENTIONS AND STYLE RULES
	13 TO LEARN MORE

