
TYPES §12.8362

In the case of constrained genericity, we must extend the ruleCTUG
given earlier for unconstrained genericity, includes an extra condition for
constrained genericity: not only must the number of actual parameters
match the number of formal parameters; the conformance requirements
must also be met. So ifC is a generic classC [G, ...], the Unconstrained
Genericity rule required that any generically derived type be of the form
C [T, ...] with the same number of actual and formal generic parameters. If
a formal generic parameter is given asG –> D with a constraintD, the
corresponding actualT must conform toD.

Here is the precise rule (whose first part, for completeness, repeats the
two clauses of the Unconstrained Genericity rule):

Again, the existence of the base class in the surrounding universe will
be ensured by the Class Type rule. In clause 1, we don’t need the clause
“except ifC classTUPLE”, sinceTUPLEas defined in the Kernel Library
is not constrained.

At first the phrasing of clause3 seems more complicated than
necessary: why must the actual generic parameter conform not just toD but
to “the type obtained fromD by ...”? This is to permitrecursive generic
constraints, as explained next.

Also note that there is no specific validity rule applying to the generic
constraint itself,D. It simply needs to be a valid type. In fact it can involve a
generic parameter, or evenbe a generic parameter; this is the case of
“recursive generic constraints”, the topic of the next section.

Constrained Genericity rule CTCG

Let C be a constrained generic class. AClass_typeCThavingC as
base class is valid if and only ifCT satisfies the two conditions of
the Unconstrained Genericity rule (CTUG):
1 •C is a generic class.

2 • The number of Type components inCT’s Actual_generics list
is the same as the number ofFormal_genericparameters in the
Formal_generic_list of C’s declaration.

and, in addition:
3 • For anyFormal_genericparameter in the declaration ofChaving

a constraint of the form–> D, the correspondingType in the
Actual_genericslist of CTconforms to the type obtained fromD
by replacing every ocurrence of a formal generic parameter ofC
by the corresponding actual generic parameter inCT.

Clauses1 and2 are a
repetitionof the clauses
of the Unconstrained
Genericity rule,CTUG,
page360.

§12.9 RECURSIVE GENERIC CONSTRAINTS 363

12.9 RECURSIVE GENERIC CONSTRAINTS

(Although important, the case described in this section does not arise in
elementary uses, and may be skipped in a first reading.)

To understand the last part of clause3 of the Constrained Genericity
rule, assume you want to define a class as

This makes perfect sense and the intent is clear: you want to allow any
type of the formC [T, U] whereT is an arbitrary type andU is ARRAY[T]
or a type conforming toARRAY[T]. So the following will be valid

But for exampleC [INTEGER, REAL] is not valid. Similarly, you
should be able to define

meaning: the first actual generic parameter must conform to the first, and
conversely. Only derivations of the formC [T, T], using the same type as
actual generic parameter, will be valid. Unlike the first example, this
scheme seems useless, but for consistency it is permitted.

This is the reason for the phrasing of clause3 of the Constrained
Genericity rule. If we just required that

“the correspondingTypein theActual_genericslist ofCTconform toD”

then in our first exampleARRAY[INTEGER] does not conform to
ARRAY[G]; actually this conformance question is meaningless since there
usually won’t even be a typeG in the class that wants to useC [INTEGER,
ARRAY[INTEGER]. Similarly, in theC [G –>H, H –> G] example, if we
want to useC [T, T] in a certain class other thanC, the questions “doesT
conform toG?” and “doesT conform toH?” are meaningless in that class.

For such conformance questions to become meaningful, we must first
replace, in the constraint, any occurrence of a formal parameter by the
corresponding actual parameter. Hence the rephrased clause:

“ the correspondingType in the Actual_generics list ofCT [must]
conform to the type obtained fromD by replacing every ocurrence
of a formal generic parameter ofC by the corresponding actual
generic parameter inCT.”

classC [G, H –> ARRAY[G]] ...

C [INTEGER, ARRAY[INTEGER]]
C [POLYGON, FIXED_LIST[POLYGON]]

-- WhereFIXED_LIST is a descendant ofARRAY

classC [G –>H, H –> G] ...

The Class Type rule
appeared on page356.

