362

TYPES 812.8

|
-
[VALINTY|

In the case of constrained genericity, we must extend theCQuleéG
given earlier for unconstrained genericity, includes an extra condition for
constrained genericity: not only must the number of actual parameters
match the number of formal parameters; the conformance requirements
must also be met. So € is a generic clas€ [G, ...], the Unconstrained
Genericity rule required that any generically derived type be of the form
C [T, ...]with the same number of actual and formal generic parameters. If
a formal generic parameter is given @s—> D with a constrainD, the
corresponding actudl must conform td.

Here is the precise rule (whose first part, for completeness, repeats the
two clauses of the Unconstrained Genericity rule):

Constrained Genericity rule CTCG

Let C be a constrained generic classChass_typeCT havingC as Clausesl and2 are a
base class is valid if and only @T satisfies the two conditions gf ~ epetitonofthe causes
the Unconstrained Genericity ruleTUG): Genericity ruleCTUG,

1 -Cis a generic class. page360
2 * The number of Type components@T’s Actual_generics list

Is the same as the numberfafrmal_generiparameters in th
Formal generic_lisof C's declaration.

D

and, in addition:

3« For anyFormal_generiparameter in the declaration©@having
a constraint of the forma-> D, the correspondingype in the
Actual_genericfist of CT conforms to the type obtained froh
by replacing every ocurrence of a formal generic parametér|of
by the corresponding actual generic parametérTin

Again, the existence of the base class in the surrounding universe will
be ensured by the Class Type rule. In clause 1, we don’t need the clause
“except ifC classTUPLE’, sinceTUPLE as defined in the Kernel Library
IS not constrained.

At first the phrasing of clause88 seems more complicated than
necessary: why must the actual generic parameter conform not [t
to “the type obtained fronD by ...”? This is to permitecursive generic
constraints as explained next.

Also note that there is no specific validity rule applying to the generic
constraint itselfD. It simply needs to be a valid type. In fact it can involve a
generic parameter, or evdme a generic parameter; this is the case of
“recursive generic constraints”, the topic of the next section.



812.9 RECURSIVE GENERIC CONSTRAINTS 363

12.9 RECURSIVE GENERIC CONSTRAINTS

(Although important, the case described in this section does not arise in
elementary uses, and may be skipped in a first reading.)

To understand the last part of claud®f the Constrained Genericity
rule, assume you want to define a class as

r classC [G, H—> ARRAY[Q]] ...

This makes perfect sense and the intent is clear: you want to allovtfgtiass Type rule
type of the formC [T, U] whereT is an arbitrary type and is ARRAY[T] appeared on pagésa
or a type conforming tARRAY[T]. So the following will be valid

C[INTEGER ARRAYINTEGER]
C[POLYGONFIXED_LIST[POLYGON]
-- WhereFIXED_LISTis a descendant &iRRAY

But for exampleC [INTEGER REAL is not valid. Similarly, you
should be able to define

o classC[G—>H,H—>(] ...
I meaning: the first actual generic parameter must conform to the first, and

conversely. Only derivations of the for@ [T, T], using the same type as
actual generic parameter, will be valid. Unlike the first example, this
scheme seems useless, but for consistency it is permitted.

This is the reason for the phrasing of clausef the Constrained
Genericity rule. If we just required that

“the correspondingypein theActual genericst of CTconform tdD”

then in our first exampleARRAY[INTEGER does not conform to
ARRAVY[G]; actually this conformance question is meaningless since there
usually won’t even be a typ@ in the class that wants to uUSHINTEGER
ARRAY[INTEGER. Similarly, in theC [G —>H, H —> G] example, if we
want to useC [T, T] in a certain class other thal the questions “doe§
conform toG?” and “doesl conform toH?” are meaningless in that class.

For such conformance questions to become meaningful, we must first
replace, in the constraint, any occurrence of a formal parameter by the
corresponding actual parameter. Hence the rephrased clause:

“the correspondingype in the Actual _generics list €T [must]
conform to the type obtained frobh by replacing every ocurrence
of a formal generic parameter o by the corresponding actual
generic parameter i€T”



